

1

BLUEFIN API LIBRARY

Processing API’s for PayConex, Bluefin Reporting Services,
Bluefin Transaction Status and the Bluefin Scheduling Layer

QSAPI 3.8, SLAPI 3.8, TSAPI 3.8, RSAPI 3.8

2

Bluefin has made efforts to ensure the accuracy and completeness of the information in this document.
However, Bluefin disclaims all representations, warranties and conditions, whether express or implied,
arising by statute, operation of law, usage of trade, course of dealing or otherwise, with respect to the
information contained herein. Bluefin assumes no liability to any party for any loss or damage, whether
direct, indirect, incidental, consequential, special or exemplary, with respect to (a) the information;
and/or (b) the evaluation, application or use of any product or service described herein. Bluefin
disclaims any and all representation that its products or services do not infringe upon any existing or
future intellectual property rights. Bluefin owns and retains all right, title and interest in and to the
Bluefin intellectual property, including without limitation, its patents, marks, copyrights and technology
associated with the Bluefin services. No title or ownership of any of the foregoing is granted or
otherwise transferred hereunder. Bluefin reserves the right to make changes to any information herein
without further notice.

Related Bluefin Trademarks
Bluefin Payment Systems®

Bluefin®
PayConex®

QuickSwipe®
Decryptx®

ã2019 All Rights Reserved.

8200 Roberts Drive, Suite 150

Atlanta, GA 30350
Toll Free (800) 675-6573

Fax: (858) 836-5692

UPDATED: January 24, 2019
Document Version 19.1

3

Contents	
Introduction – Bluefin API Library .. 6

PayConex ... 6
Reporting Services ... 6
Transaction Status ... 6
Bluefin Scheduling Layer .. 6
API Requirements .. 7
Benefits of the Bluefin Payment Gateway ... 8

Getting Started .. 9
HASH for Security ... 9
PayConex Transaction Interface ... 10

Orientation .. 10
API Functions ... 11
QSAPI Request Format Variables Index ... 14
QSAPI Response Format Variables Index ... 24
Account Balance Inquiry (Elavon Only) .. 26

Transaction Status Interface .. 28
Orientation .. 28
TSAPI Functions ... 30
TSAPI Request Format Variables Index .. 30
TSAPI Response Format Variables Index .. 31

Scheduling Layer Interface ... 32
Orientation .. 32
API Functions ... 32
SLAPI Request Format Variables Index .. 34
SLAPI Response Format Variables Index .. 36
SLAPI Appendix A: List of Recurring Schedules .. 37
Start Date versus Reference Date .. 38

Reporting Service ... 39
Orientation .. 39
Special Note on ACH reporting: ... 39

RSAPI Functions ... 40
RSAPI Request Format Variables Index .. 40

4

RSAPI Response Format Variables Index ... 42
RSAPI HTTP Response Format Variables Index .. 45

Appendix: Using HASH for Authenticated Transactions .. 46
Variables Index .. 47

Appendix: Transparent Redirect ... 48
Overview .. 48
Configuration ... 48
Configuration (PayConex) .. 50
Variables Index .. 51

Appendix: AJAX / CORS Support ... 52
Overview .. 52
Configuration ... 52
Browser Support .. 52
Sample Code (PHP and jQuery): .. 53

Appendix: POSTback .. 55
Orientation .. 55
Implementation steps: ... 55
Custom Process Flow ... 56
POSTback Response Payload ... 56
POSTback Example Response .. 57

Appendix: Transaction Flow Diagrams ... 58
Appendix: Point to Point Encryption .. 61

Overview: ... 61
Orientation: ... 61
Variables Index .. 63

Appendix: Best Practices .. 64
Utilizing responses ... 64
Utilizing reporting .. 64
Card capture .. 64
Error messages: ... 65
Zero Dollar ($0) Authorizations ... 65
URL Encoding ... 65

Appendix: Request and Response Codes .. 66
Overview .. 66
Code Samples .. 68

5

QSAPI ... 70
TSAPI .. 82
SLAPI .. 84
RSAPI .. 87

Appendix: Transaction Responses and Messages ... 90
Transaction Origins: ... 90
Transaction Authorization Response Codes: ... 90

Authorization Response Codes: ... 90
AVS/CVV2 Authorization Responses: .. 90
FraudFirewall Authorization Responses: .. 91
Traffic Limit Authorization Responses: ... 91
Bank Authorization Responses: .. 91

Transaction Status Codes: .. 94
EMV Data Overview ... 95

Request .. 95
Response .. 96
Example Request (Credit Card, EMV Contact) ... 96
Example Response (EMV related data) .. 97
EMV Tag Info: ... 97
Key exchange request .. 100
Key Exchange Response ... 100
Example Request ... 100
Example Response ... 100
Key Exchange Attributes .. 101

6

Introduction	–	Bluefin	API	Library	
This document reviews Bluefin’s family of Application Programming Interface (API) services. These
services provide our clients with unparalleled access, flexibility, and security for processing and
managing electronic payment transactions.

PayConex
PayConex is Bluefin’s flagship transaction processing solution. The PayConex API (QSAPI) allows our
customers to programmatically submit transactions through the PayConex Gateway. QSAPI’s flexible
solutions allow our customers several options for submitting transactions while maintaining PCI
compliance through the entire process. QSAPI supports any application or device that can connect
through the Internet-based API and also offers PCI compliance scope reduction through technologies
such as end-to-end encryption (E2E) and tokenization. When used in conjunction with our Transparent
Redirection product, a merchant can greatly reduce PCI compliance scope by bypassing any permanent
or temporary storage of cardholder data (CHD) on servers, networks, or computing devices.

Reporting Services
The Bluefin Reporting Services API (RSAPI) provides our customers with a level of access to reporting
data rarely found in the industry. Using RSAPI, our customers can request formatted exports of
transaction data from previous days. RSAPI’s reports contain no sensitive cardholder data, such as card
numbers, meaning the data provided by RSAPI is 100% PCI compliant.

Transaction Status
The Transaction Status API (TSAPI) ensures processing and communication integrity. Transactions
submitted through QSAPI are transmitted over the Internet. From time to time, an Internet Service
Provider (ISP) or upstream Internet network (the backbone of the Internet) may lose a packet or timeout
on a communication during the response from QSAPI to your system. TSAPI allows you to pre-fetch
token IDs and then submit the token ID with a new transaction. If there is ever an Internet timeout, you
can query TSAPI to give you the status of the transaction and whether it was received, approved, or
declined. This reduces duplicate charges and enhances the overall integrity of the communication
process.

Bluefin Scheduling Layer
The Bluefin scheduling layer allows our clients to create recurring payments without having to build a
client-side recurring payment solution. The Scheduling Layer API (SLAPI) allows our clients to create a
wide range of recurring transaction scenarios to manage the unique transaction processing needs of
their business. The scheduling layer also allows our clients to access existing recurring payment records
using our secure PCI compliant token system to modify, cancel, or view recurring payment schedules
and details.

7

API Requirements
Use of the Bluefin Gateway and its API’s has certain minimum requirements that must be met. In
addition, there are various security configurations that are enforced, which are explained below.

• A merchant account that can accept transactions through First Data, Paymentech (PNS-Tampa)
Netconnect, Elavon, Vital/TSYS, or ACHWorks/TSS is required. Other processors are being
added, so please inquire with your sales representative
for a current list of processor interfaces in progress.

• The merchant account must be properly underwritten

and configured to support the intended payment
channel: Ecommerce, Card Not Present (CNP), Card
Present (swipe), etc.

• The merchant account must have the appropriate

entitlements configured to support the appropriate
bankcard or charge-card type: Visa, MasterCard,
Discover, American Express, Diners Club, JCB, ACH and
EBT.

• An appropriate PCI PED/PTS-compliant injected

keypad or swipe device in order to accept PIN
numbers, swiped card tracks, or to implement P2PE
(point-to-point encryption) or E2E (end-to-end
encryption) is required.

• The application must be capable of performing a CGI

FORM POST over TLS1.1 or greater (HTTPS) via port
443 and storing access credentials securely.

• The software application, any service provider or host

that is transmitting, storing, or processing cardholder
data, and the merchant must be in compliance with
the appropriate PCI SSC (Payment Card Industry
Security Standards Council) security initiative, PCI-DSS
(Data Security Standard) for merchants and service
providers, or PA-DSS (Payment Application) for
software vendors. PCI compliance for the application and
merchant are the responsibility of the merchant and its application partners. For customers
who want to ensure their PCI compliance, Bluefin provides an array of compliance services as
part of their added service lines. Please contact your sales representative for more information.

For PCI compliance and security reasons, merchants should not store cardholder data for any reason.
Tokenization functionality is described herein that will allow merchants to perform reissues, refunds,
returns, voids, and recurring billing without the need to store the card number.

Did You Know?

Implemented correctly, the Bluefin
transaction process is PCI compliant. If
you have any concerns about the PCI
compliance of your existing corporate
infrastructure, your legacy applications,
or how to properly implement QSAPI for
compliancy, please contact us at
pciassist@bluefin.com to have a
representative discuss our PCI
compliance consulting services.

When you secure your merchant
account with Bluefin, you have access to
a very unique resource. Bluefin is one of
a handful of merchant account providers
who maintain their own Merchant
Compliance Assistance Department. This
means that your questions about PCI are
answered expeditiously, you have access
to our convenient online tools, and if
you have need of external scans or need
assistance with preparing for an on-site
audit by a QSA (Qualified Security
Assessor), Bluefin can serve as your
expert advocate.

8

Benefits of the Bluefin Payment Gateway

Feature Details

Tokenization The payment gateway stores the card number so the client does not have to,
significantly minimizing the vendor/merchant’s PCI footprint.

Point-to-Point
Encryption
(P2PE)

Bluefin encrypts the magnetic stripe (track data) and card data at the point of
entry using a secure device rather than the computer keyboard. Merchants
implementing Bluefin’s PCI-validated P2PE solution can consider their
encrypted cardholder data to be completely out of PCI scope.

Transparent
Redirect

The transparent redirect feature is an elegant token-based method to securely
and transparently collect card data directly from the cardholder while allowing
the merchant to still manage the authorization process. Removes the
vendor/merchant from PCI transmission scope.

Store & Convert Bluefin supports a “STORE” transaction type that allows a vendor/merchant to
convert all of their stored credit card and ACH numbers to tokens, via the API.

Transaction
Status

The Transaction Status provides the vendor/merchant the ability to determine
the status of a previously submitted authorization.

Recurring
Payments

Recurring enables predefined, scheduled transactions, for credit card and ACH
transactions. Vendor/merchants can manage, create, update, and delete via
the API.

Reporting API The Reporting API lets the vendor/merchant receive their previous day’s
transaction activity programmatically.

9

Getting	Started	
The first step in developing a connection from your application to any of the PayConex API’s is getting
set up with a certification account. You should have been assigned certification credentials during your
setup process, but if you have not been assigned an account yet, please use the form at the following
address to request an account:
http://www.bluefin.com/software-integration/developer-resources/

The certification environment (also referred to as CERT) allows our customers to develop their solution
in an environment that is identical to our live production environment. Developing on CERT allows you
the ability to test transactions without the fear of cards being submitted for actual processing, and
removes any concerns over having to remove test data from production.

CERT accounts are provided with every integration project, and can be made available again at a later
date should you wish to make coding changes on your end that you would like to test. The CERT
environment does support all API functions, including support for M100/M130 encrypted devices as well
as P2PE key injected devices.

There are two URLs that are important for the API and must be followed. When developing and/or
testing, you need to use the CERT URL. For production (live) processing, you need to just change the first
portion of the URL. Both URLs are shown below:

CERT (For Existing Implementations Only)
https://cert.payconex.net/api/qsapi/3.8/

PRODUCTION
https://secure.payconex.net/api/qsapi/3.8/

Note: The URLs shown above are the current standards. The CERT URL is for future and current use in
your testing. All Merchants should be using TLS 1.2.

You will be issued different API credentials for certification and production. After the CERT process,
when you are ready to process cards, you will need to update your API authentication credentials with
the production credentials that were provided to you for your transactions to process correctly.

If you have any technical issues during the certification process that you need help with, please email us
at support@bluefin.com. Members of our support staff can help answer your technical questions

HASH	for	Security	
Bluefin highly recommends using a HASH for security reasons. A hash function is an algorithm that
transforms (hashes) an arbitrary set of data elements, such as a text string or file, into a single fixed
length value (the hash). The computed hash value is a means of protecting sensitive data. Bluefin has
included this functionality into its API.

See “Appendix: Using HASH for Authenticated Transactions” (Pg. 43) for more information and its use.

10

PayConex	Transaction	Interface	
PayConex’s flexible, secure and PCI compliant API allows our customers the flexibility to run a wide
variety of transaction types.

Post a Sale (Payment)
This allows a merchant to post a sale transaction to a variety of tender
types (Card, ACH, etc.).

Post an Authorization (Authorization ONLY)
This allows a merchant to verify the ability of a card to accept a specific
transaction amount without actually charging the card. Funds are
reserved on the card for future capture.

Post a Capture
This allows a merchant to capture a previously authorized card, thus converting an Authorization (pre-
authorization) into a Sale.

Post a Reissue
This allows a merchant to create a new transaction, using a previously tokenized card. This important
function allows merchants to create new transactions based on card numbers stored at Bluefin, without
storing cardholder data on their own systems.

Post a Refund
The most common use of this transaction type allows a merchant to refund an existing transaction, but
will also reverse a recent payment transaction. You can refund the entire amount or a partial amount. If
a transaction is refunded the same day it is run, then it results in voiding the sale back to a pre-
authorization state. If the transaction is refunded after it has already been captured/settled, then it
results in crediting the funds back to the card. Bluefin flexibly manages which is the appropriate action
to take, so all you need to do is submit the refund.

Post a Credit
This allows a merchant the ability to credit money back onto a card. With this transaction type, there is
no correlation to an original payment.

Store Only
This allows a merchant to store the cardholder data (card number, expiration, name, etc.) for a card, for
later use, without running any actions against the card immediately.

Orientation
Bluefin has created this guide to describe the programming required to connect applications to Bluefin’s
PayConex Gateway in order to transmit payment transactions and related operations to various
payment processors and payment gateways using QSAPI (PayConex Application Programming Interface).

The QSAPI interface is both a secure and PCI compliant processing solution.

TIP:

To post an automatically
recurring transaction, please
visit the Scheduling Layer API
(SLAPI) portion of the
document.

11

QSAPI is a language-agnostic, hosted payment acceptance system that supports the HTTP protocol over
TLS (HTTPS) encrypted connections. QSAPI utilizes the HTTPS Request/Response model and will only
support the HTTP POST method. The HTTP GET method is not accepted for security reasons.

API Functions
The content contained in this portion of the document outlines some of the key functions that can be
performed using QSAPI. The examples listed below are not a holistic guide to all functions that can be
accomplished with QSAPI; rather they are examples of common
actions and are meant to help developers get acclimated with the
QSAPI functions. Please visit the variables index at the end of the
QSAPI portion of the documentation to review all of the posts that
can be made through the QSAPI interface as well as the responses
that the Bluefin payment gateway will make in response to those
posts. The Appendix: Code Requests and Responses at the end of
this document contain coding examples for QSAPI Requests and
Responses.

A. Post a sale
Our merchants can post a sale transaction to QSAPI for a variety of tender types. These types include
credit cards, debit cards, check cards, ACH, EFT, electronic check, EBT, and gift card / stored value card.
Using our secure API access key, our merchants can post the transactions and receive back immediate
responses that will indicate the successful posting of a sale.
Merchants who post transactions can use our invisible redirect
which passes the variables to our API, which in turn will pass a
token ID for the transaction. That token ID then allows the
merchant to retrieve reference data related to the customer and
the transaction without ever actually having the cardholder data
touch our merchant’s web servers. The token ID can be stored on
the merchant’s servers and used again when the merchant wants
to perform new actions for the customer.

B. Post an authorization
Authorization (or pre-authorization) allows for a card to be
authorized to approve a dollar amount for a potential future
purchase.
Authorizations are mainly used for two reasons. The first is by
restaurants or other businesses that need to approve a card and
account for an additional amount of money (usually tips) being added to the merchant-generated bill
before the card is actually charged. The second most common use for an authorization is when a
merchant wishes to charge a card that it has been previously tokenized with Bluefin, and wants to
validate that the card can take a future charge.

For customer data that is securely held on the Bluefin servers, our merchants can use the token ID
previously given to them for a consumer’s card during a previous transaction via QSAPI, provided that
the merchant stored the token ID and properly associated it with a previous sales record. In this case, it
is typical to pre-authorize for $0. This will validate that the card number, expiration date, address, and

TIP:

To see the responses that list
the reasons for failed
transactions, please review
authorization messages listed
in the index of QSAPI.

TIP:

All the tender types from a
coding standpoint function
the same. Tender types based
on credit card or debit and
check cards resolve with the
financial institutions in real
time. ACH and electronic
checks require longer
resolution times to resolve
the transfer of funds with the
issuing financial institution
responses.

12

CVV are correct and that the card account is actually open, while simultaneously tokenizing the card for
future charges by the merchant. Examples for both scenarios are listed in the Appendix.

C. Post a capture
Using the capture feature of the API, our merchants can convert a previously pre-authorized card into a
sale transaction via QSAPI.

There are limited scenarios in which a merchant may get verification for a card outside of Bluefin. These
scenarios are most common when a merchant contacts the card issuer over the phone, verifies the
ability of that card to process the desired transaction, and the merchant is given a verification ID
number. For those cases, please use the Force transaction type listed in this document.
You may also capture for more than the originally authorized amount for merchants that are allowed to
accept tips. Similarly, you can capture less than the original authorization amount.

D. Post a reissue
A reissue allows our merchants the ability to post new charges against cards previously used by their
customers. Merchants who have previously posted a transaction and who have the Bluefin issued token
ID associated with that card stored on their system can post that token ID with new sales transaction
requests in lieu of providing the original card number. This function is an important part of the
tokenization process. By using Reissues and Refunds with token IDs instead of providing the full
cardholder information, a merchant can effectively eliminate the need to store cardholder data on their
own servers.

E. Post a refund
By posting a refund, a merchant can directly reverse a sale charge that was applied to a card. The refund
action is predicated on there being a previous transaction that was sent through QSAPI. The refund
function is an intelligent function that can verify if the previous transaction (identified by its token ID)
has been fully settled with the issuing bank. Based on whether it has been fully settled or not, it will
perform either a credit action or void the sale, converting back to an authorization-only status.

F. Post a credit
Credits allow merchants to return funds to a card or ACH
account. There is no actual tie to a pre-existing transaction. The
only limit imposed would be on the merchant account by their
issuing bank. The card and/or ACH account will be verified
however.

G. Post a force
There are rare instances in which a merchant may not be able
to or wish to get proper authorization on a transaction. In these
cases, the merchant is provided with a message to call their
merchant processor for an approval code. Once received, this method can be used to submit the new
approval account along with a transaction to force the transaction to settle.

The use of the force allows the merchant to post the transaction to the cardholder’s account without
approval, and then using the force, post pass an approval code to complete the transaction. These
charges, however, will not be applied until settlements are run during the batch process.

FYI:

Due to the complexity of proper
card charging policies and the risk
of merchant losses due to
improper implementation, in most
cases, a refund is the most
appropriate action instead of a
credit.

13

H. Store a card
Most cardholder data that we store is the result of an initial transaction. However, merchants often
need to store cards for future transactions with their customers, without ever needing to apply a charge
at the time of the record creation with Bluefin. Common usages for this are businesses that require
delayed potential transactions such as hotels that require a card for potential incidentals, or online
merchants who put a card on file when a user creates a shopping account.

It is highly recommended to pre-authorize a card for $0.00 instead of
doing a “Store Only” function because you will then know in real-
time whether the card number is active and good, has funds, and
that details such as expiration date, address, and card verification
codes match with what the cardholder’s issuing bank has on file. All
too often, a merchant stores a card and then when going to charge
the card at a later point finds out that invalid details were provided
by the cardholder. If they had authorized a card for $0.00, they
would have known in real-time and could have prompted the user to
correct the details or provide a new payment method. However,
some merchants will still choose to perform a store only operation.

Using QSAPI, the cardholder data is sent to Bluefin and not passed onto the issuing bank in real-time for
authorization or verification. QSAPI then acknowledges receipt of that information by passing back a
token ID that our merchant can then use at a later date to use the card number when they wish to apply
actions such as a sale.

Note: With the STORE transaction type, no actual transaction occurs. As such, the “transaction
approved” response will be false. To confirm whether the store request was submitted correctly, simply
look for the “transaction id” for the token that was returned. To ensure no errors occurred in the STORE
request, you may look for failed responses in the error, error code, or error message parameters as well.

I. Handling a partial authorization
If you are processing cards in a retail or e-commerce environment there are unique instances, most
notably with stored value cards, in which a card will not have sufficient value to cover the entire
purchase. In such instances, you can perform what is called a partial auth. Rather than failing as
insufficient funds, the merchant will be presented with the opportunity to capture the sale with two
separate transactions.

If partial authorization is enabled in your account settings, the stored card will be authorized for its
maximum value, and that value will be sent back to the merchant’s software application. Based on how
the merchant chooses to handle the situation programmatically, they can accept the initial authorization
and add a second new transaction for the remaining value, or they can void the initial authorization and
ask the customer to run the transaction with a different card that can handle the full value.

Here is an example scenario:
The Customer wishes to purchase an item for $100. They present the retailer with a pre-paid Visa card,
which says $100 on it, but in reality, only has $75 left. The merchant sends Bluefin the card data and
transaction amount, and QSAPI responds to the merchant with the following information:
auth_amount = 75
requested_amount = 100

TIP:

If you would like to store a
card to be used in a
recurring payment, please
visit the SLAPI portion of
this document to learn how
to setup the recurring
schedule after you store or
authorize the card.

14

This indicates the card was just authorized for $75, and the real transaction amount was $100. At this
point the $75 authorization will either need to be captured as a sale, or cancelled. If canceled the
merchant would have their software handle the cancel like any other cancelled transaction.

If the merchant elects to keep the $75 authorization, then they would need to have their software take
the value of the $100 requested amount and subtract the authorized amount of $75 to come up with a
remaining $25. The merchant would now run a new and separate $25 transaction for the customer.

*Please note that partial authorizations are only supported on the First Data North, First Data Omaha,
and Elavon networks.

J. Level 2 Transactions / Purchasing Cards
If you are supporting purchasing cards and level 2 transactions you will be required to capture and pass
additional data fields in order to comply with the requirements issued by the major card brands.
Without the use of the additional fields, your transactions will not qualify as level 2 transactions.

The additional fields to be included in the post are:
level2_tax (required, Visa must be greater than 0.00, MasterCard allows 0.00)
level2_merchant_reference (required)
level2_zip (recommended)
level2_orderid (recommended)
*see QSAPI Request Format Variables Index for more details on these fields.

K. Restaurant Transaction
To pass qualifying restaurant transactions the following additional values will need to be passed in with
your post.
restaurant_server_id (must be a numeric value)
restaurant_gratuity

Please note that the value of “restaurant_gratuity” passed in a transaction is NOT added to the total
value of your sale, it is INCLUDED in the total sent. For example, if you authorize for $10, and your
customer adds a $2 tip, you must pass in a sale value of $12, and state that $2 of that total value is
intended for restaurant gratuity.

QSAPI Request Format Variables Index
Below are all of the variables that can be posted to QSAPI along with a brief description of their
function.

Variable Name Max Type Req'd Description
account_id 12 Numeric Yes The Payconex account identification

number that you are issued after your
account has been setup.

api_accesskey 32 Alphanumeric Yes The secret key that you will be
provided when your Payconex account
is set up and when you have requested
access to QSAPI.

15

timestamp 19 YYYY-MM-DD
HH:MM:SS

No If used, MUST be included in a hash for
authenticated transactions.
See "Appendix: Using HASH for
Authenticated Transactions"

tender_type n/a Enumerated Yes The payment tender type that you are
submitting. The following enumerated
values are allowed:
CARD: credit, debit, and check cards
ACH: ACH , EFT, or electronic check
EBT: Electronic Benefits Transfer
(Elavon only)
DEBIT: PIN Debit card only
(Elavon/Omaha/North)

transaction_type n/a Enumerated Yes The type of transaction you are
requesting, with these enumerated
values allowed:
AUTHORIZATION: authorizes (holds)
the funds on the card but does not
transfer them. Most banks support a
$0.00 authorization in order to
validate the card number, expiration
date, and account status. This does,
however, incur an authorization
charge on the merchant account and a
transaction charge in Payconex.
SALE: authorizes the funds on the card
and flags the transaction to be
captured for settlement at the next
settlement time.
REFUND: refunds a previous sale. If
the transaction has not yet been
settled, then this results in a void.
Otherwise, for Cards only, it results in
a credit back on the card. ACH
transactions can't be refunded once
they are submitted for settlement
(NOTE: For actual transaction
settlement times, contact Bluefin
support). You can specify an amount
less than the original sale amount.
Requires token_id.
CREDIT: puts money onto a card or
into a bank with no offsetting sale.
Most operations can be managed via
REFUND. Only allowed if account is
configured to allow Credits.
CAPTURE: flags a previous
authorization to be captured for
settlement at the next settlement
time. Requires token_id.
SETTLEBATCH: settles all un-settled

16

sales, refunds, credits, or
authorizations that have been
captured.
STORE: stores credit card/ach account
info for later use.
FORCE: forces through a transaction. A
6 digit authorization_code must also
be provided.
REVERSAL: removes an authorization
request on a credit card or debit/ebt.
Requires token_id (Elavon,
Paymentech, RapidConnect only)
BALANCE: request account balance on
an EBT/Debit card (Elavon only).
CANCEL: removes a refund request on
a credit card or debit/ebt. Requires the
refund token_id (RapidConnect only)

transaction_amount 9 Numeric with
decimal

Yes This is the dollar (or other currency)
amount of the transaction. Only
numbers and a single decimal are
allowed. Commas are not allowed.
The maximum amount is 999999.99.
That is 1 cent less than 1 million. This
is because the decimal is counted in
the max size. Values with no decimal
and no cents are allowed. Values with
only a single number after the decimal
are allowed and will be assumed to
have a trailing 0.

transaction_description 65K Character No A description of the payment. This is
an open field. If emails are sent to the
customer or merchant, this will show
in the “Description:” field. You may
use this to send any information that
you wish. It can store up to 65,000
characters.

17

card_number 16 Numeric Yes/No The card number with no spaces,
dashes, or hyphens. Required for card
transactions using KEYED entry (see
page 55-56). It is not required for
ACH/electronic checks.

card_expiration 4 Numeric Yes The card expiration date in the format
of MMYY. This does not include
hyphens, dashes, spaces, or slashes. It
is required if submitting a card. It is
not required for ACH/electronic
checks.

card_verification 4 Numeric No The CVV/CVC/CID value which is the 3
digits from the signature panel on the
back of a Visa/MasterCard/Discover or
the 4 digits from the front of an
American Express.

card_tracks ? Character Yes/No The characters from the full, un-
modified payload from the magnetic
stripe on a card. This is now the
preferred method to send card track
data and replaces both "card_track1"
and "card_track2" parameters, so do
not send "card_tracks" in combination
with those. Track data may not be
stored for any reason. Required for
card transactions using SWIPED
entries (see page 55-56).

card_track1 ? Character No Should use "card_tracks" parameter
instead. The characters from track one
of the magnetic stripe on a card. Track
1 begins with “%” and ends with “?”
and includes the cardholder name. If
you do NOT use "card_tracks", this is
the primary choice in choosing which
track to send. Track 1, Track 2, or both
can be sent, but NOT with
"card_tracks". Track data may not be
stored for any reason.

card_track2 ? Character No Should use "card_tracks" parameter
instead. The characters from track 2 of
the magnetic stripe on a card. Track 2
begins with “;” and ends with “?” and
does not include the cardholder name.
Track 1, Track 2, or both can be sent,
but NOT with "card_tracks". Track
data may not be stored for any reason.

18

cashier 100 Character No The name or id of the cashier that is
submitting the transaction. This is
shown with PayConex transaction
details as the originator of the
transaction. You may use any
designation you wish. Good choices
are the user name of the POS clerk,
email address, or the name of the
application that is connecting.

bank_account_number 26 Numeric No The bank account (DDA) number that
is required for an ACH/electronic
check.

bank_routing_number 9 Numeric No The bank routing (ABA) number that is
required for an ACH/electronic check.

check_number 15 Numeric No The number of the check used for
electronic checks that are processed
via ACH. It is optional.

ach_account_type n/a Enumerated No This is the type of bank account for
ACH/electronic check transactions. It
will default to checking if none is
specified. The allowed values are:
CHECKING: checking account
SAVINGS: savings account

token_id 12 Numeric No 12 digit transaction_id of a previous
transaction. The token_id is used for
reissues, refunds, and recurring
transaction creation. Please see the
SLAPI documentation for more
information.

group 12 Alphanumeric No Groups are pre-configured flexible
groups that can be used for various
reasons, including:
a) to direct transactions to separate
back-end merchant accounts or
depository accounts. Please work with
your Bluefin Representative to
configure any of these options.
b) to assign transactions to a specific
grouping that you wish.

custom_id 50 Character No This is a custom identifier that can be
used for any purpose you wish. Often
times this is a customer number or
some other foreign key used to match
up reports and transactions lists with
customer information on your
database. For some processors, such
as Paymentech, this ID is passed
through to the processor and available
in their reporting. This can ease
syncing up reporting.

19

custom_data 65K Character No An open variable. Many developers
use this variable to transmit structured
data formats or serialized variables.
You can send through many
variable=value pairs through this
single variable.

input_group 10 Character No An open variable. Used to identify or
group transactions together in some
fashion.

first_name 50 Character Yes/No Card: The first name of the cardholder
as it appears on the front of the card.
It is not required for cards.
ACH: The first name of the account
holder as it appears on the front of the
check or bank statement. It is required
by NACHA to provide first and last
name.

last_name 50 Character Yes/No Card: The last name of the cardholder
as it appears on the front of the card.
It is not required for cards.
ACH: The last name of the account
holder as it appears on the front of the
check or bank statement. It is required
by NACHA to provide first and last
name.

street_address1 100 Character No Street address of the cardholder or
bank account holder.

street_address2 - Character No Suite number or other qualifying part
of the address. NOT sent to the
processor.Total of address1 and 2 are
100 maximum and will be truncated

city 100 Character No The city portion of the cardholder or
account holder address. This is not
sent to the processor. It is only stored
for your reporting purposes.

state 2 Alphabetic No The two digit state code of the
cardholder or account holder address.
This is not sent to the processor. It is
only stored for your reporting
purposes.

zip 10 Numeric with
hyphen

No The 5 digit format or 5+4 formatted zip
code of the cardholder or
accountholder. For example, 12345 or
12345-1234. Only numbers and a
hyphen are allowed.
INTERNATIONAL: Can contain any
combination of letters or numbers,
and either a space or a hyphen.

20

country 3 Alphabetic No This is a 2 or 3 character country code
value for the card/account holder:
http://www.iso.org/iso/country_codes
Note: We do NOT validate the value.

authorization_code 6 Alphanumeric No For credit/debit cards, this is the 6
digit authorization code from a
previously authorized transaction that
is required to be provided with a Force
transaction. It may also be obtained by
calling the merchant account
processor for a force code.
For EBT cards, this is the authorization
code that is required along with the
voucher number to capture a prior
authorized transaction.

pin ? Alphanumeric No The encrypted PIN Block portion for
PIN debit or PIN EBT transactions. It
must be obtained from a PCI PTS/PED
Certified device that is injected by
Bluefin’s Encryption Service
Organization or Key Injection Facility
(KIF). This PIN Block may never be
stored for any reason.

ksn ? Alphanumeric No The Key Sequence Number (DUKPT)
portion for PIN debit, PIN EBT, or EMV
transactions. It must be obtained from
a PCI PTS/PED Certified device that is
injected by Bluefin’s Encryption
Service Organization or Key Injection
Facility (KIF). The KSN may never be
stored for any reason.

ebt_type n/a Enumerated Yes/No For EBT (Electronic Benefits Transfer),
the type can be as follows:
FOOD: this is for a food sale
CASH: this is for a cash sale
VOUCHER: this is for a voucher
Required if tender_type=EBT

ebt_voucher 15 Numeric No The EBT Voucher number for prior
(phone) authorized EBT transactions.
Required if "ebt_type" is VOUCHER

disable_avs 1 Boolean No Disable Address Verification.
disable_cvv 1 Boolean No Disable Card Verification such as CVV,

CVC, CID.
disable_fraudfirewall 1 Boolean No Disable any Fraud Firewall controls.

21

ach_sec_code n/a Enumerated No The Standard Entry Class (SEC) code
that is required for ACH/echeck
transactions. If no SEC code is
provided, the default that is set up for
the account is used. Please note that if
you provide an SEC Code here that the
account is not underwritten for, the
bank will decline the transaction.
Acceptable types are:
CCD: Cash Concentration or
Disbursement. This is the default type
for corporations. Requires a signature.
PPD: Prearranged Payment & Deposit.
Requires a signature.
WEB: Web-originated, ecommerce
transactions.
TEL: Telephone-initiated transactions.
Voice recording required.
POP: Point-of-Purchase, in-person
transaction.
ARC: Accounts Receivable. This is for
converting a check into an electronic
ACH transaction.
RCK: Re-presented Check. This is used
to present a declined check an
additional time.
DEF: This can be sent to tell PayConex
to use the default ACH SEC code.
Sending nothing will result in the same
action.

ach_opcode n/a Enumerated No For processor-specific ACH features.
01, 02, 03, S, R

phone 20 Alphanumeric No The phone number of the
cardholder/account holder. It does not
expect any specific format, is not sent
to the processor, and is stored only for
your reporting use.

email 100 Character No The email address of the
cardholder/account holder. It does not
expect any specific format, is not sent
to the processor, and is stored only for
your reporting use or sending email
receipts.

send_customer_receipt 1 Boolean No Use this to override the default setting
to send or not send email receipts to
the customer.

send_merchant_receipt 1 Boolean No Use this to override the default setting
to send or not send email receipts to
the merchant.

ip_address 15 NNN.NNN.NNN.NNN No IP address of the client which initiated
the transaction.

22

transaction_id 12 Numeric No The transaction_id returned from a
TSAPI "GET_TRANSACTION_ID"
request. It is used to create a new
transaction with the specified
transation_id. Please see the TSAPI
documentation.

response_format 5 Enumerated No Desired response format.
FORM: www-form-urlencoded string
(default format)
JSON: JavaScript Object Notation
DEBUG: human readable array output

allow_partial 1 Numeric No Allows for support of partial auths. By
default QSAPI assumes all transactions
do not support partial auth unless
specified. Values for partial auth are:
0: declares no partial auths allowed.
Unneeded declaration however since
by default partial auths are not
allowed.
1: partial auths allowed.
*only supported in QSAPI 3.7 or higher

level2_tax ??? Numeric with
decimal

No Used exclusively for level 2
transactions. Required for level 2
transactions. For Visa cards, value
must be expressed as greater than
0.00, for MasterCard value may be
expressed as 0.00 if desired.
*only supported in QSAPI 3.7 or higher

level2_zip 10 Numeric with
hyphen

No Used exclusively for level 2
transactions. REQUIRED for level 2
transactions and it is probably the
same value as the "zip" variable value.
This value is not validated like the
"zip" variable value, so any
alphanumeric value up to 10 digits is
valid.
*only supported in QSAPI 3.7 or higher

level2_order_id 17 Alphanumeric No Used exclusively for level 2
transactions. Merchant determines
any custom alphanumeric value.
*only supported in QSAPI 3.7 or higher

level2_merchant_reference 25 Alphanumeric No Used exclusively for level 2
transactions. Required for level 2
transactions. Merchant determines
any custom alphanumeric value.
*only supported in QSAPI 3.7 or higher

restaurant_server_id 3 Numeric No Used exclusively for restaurant
transactions. Value can be null, 0 ~999
*only supported in QSAPI 3.7 or higher

23

restaurant_gratuity 9 Numeric No Used exclusively for restaurant
transactions. Value can be 0 ~
999999.99 Value must contain
decimal point with two decimal point
values.
*only supported in QSAPI 3.7 or higher

payment_type 11 Enumerated No The type of payment for this
transaction. Valid values can be:
ECOMMERCE, INSTALLMENT,
RECURRING, or MOTO (Mail &
Telephone Order)

installment_number ??? Numeric No Used exclusively for installment
transactions, and is the current
installment number.
*only supported in QSAPI 3.7 or higher

installment_count ??? Numeric No Used exclusively for installment
transactions. Total number of
installments. Please note that the
installment count value never
decreases, only the installment
number should increase.
*only supported in QSAPI 3.7 or
higher.

reissue 1 Boolean No Reissue a transaction. If included (set
to 1), must use "token_id" with known
existing value. Amount, name,
description, expiration can be
changed.

disable_redirect 1 Boolean No Disabling redirect will override the
success_url and decline_url settings,
and force the return of transaction
response in the format specified by
response_format. This setting is
required for using AJAX API calls.

merchant_reference_num 11 Numeric No An optional merchant reference
number that can be passed to
processor for reconciliation purposes.

cashback_amt 9 Numeric No Amount requested as cash back (cash
returned to the customer)

surcharge_amt 9 Numeric No Amount charged for fees, etc.
etoken ??? Alphanumeric No eToken value of a previously ran

Bluefin iFrame transaction. Typically
used in a Sale transaction, with the
eToken variable and value sent. No
card or PAN needed when using
eToken.

24

QSAPI Response Format Variables Index
Below are all the variables that can be received into response to posts made to QSAPI along with a brief
description of their function.

Variable Name Max Type Description
transaction_id 12 Numeric The transaction id for the new transaction.

When using tokenization, this is the
transaction_id that you submit as the
token_id.

original_transaction_id 12 Numeric Will be returned for refunds. This is the
original transaction_id of the Sale transaction
that was refunded. It is provided for
reference purposes.

tender_type n/a Enumerated This will be the same as the tender_type
provided in the request. It is provided for
reference purposes. See Response Format for
list.

transaction_timestamp 19 YYYY-MM-DD
HH:MM:SS

This is the timestamp of the newly created
transaction.

card_brand n/a Enumerated VISA, MASTERCARD, AMERICAN EXPRESS,
DISCOVER, ACH, EBT

transaction_type n/a Enumerated This is the transaction_type of the original
transaction.

last4 4 Numeric The last four digits of the card number or
Primary Account Number (PAN). For ACH, it is
the last four digits of the account number.

card_expiration 4 Numeric The month and year of the card expiration
date in the format MMYY. For example, 0120
for January 2020.

authorization_code 6 Alphanumeric This is the auth code returned by the
processor.

authorization_message 50 Alphanumeric APPROVED or the auth message from the
processor (e.g. AUTH DECLINED 200).

transaction_amount 9 Numeric with
decimal

The same variable submitted in the request.
If a partial auth is valid, this represents the
actual amount authorized.

25

avs_response 1 Enumerated A single letter address verification response:
DFJMQVXY - Address and ZIP code match
LWZ - ZIP code match, address is wrong
ABOP - Address match, ZIP code is wrong
KN - No match, address and ZIP is wrong
U - No data from issuer/banknet switch
R - AVS System unable to process
S - Issuing bank does not support AVS
E - Error, AVS not supported for your business
C - Invalid address and ZIP format
(International)
I - Address not verifiable (International)
G - Global non-verifiable address
(International)
? - Unrecognized codes (none of the above)
(empty) - No AVS data (blank)

cvv2_response 1 Enumerated A single letter card verification value
response:
M - CVV match
N - CVV does not match
P - CVV not processed
S - Card has CVV, customer says it doesn't
U - No CVV data from issuer
? - Unrecognized codes (none of the above)
(empty) - No CVV data (blank)

custom_id 50 Character The same variable submitted in the request.
keyed 1 Boolean True for keyed transaction.
swiped 1 Boolean True for swiped transaction.
transaction_approved 1 Boolean True for approved.
custom_data 65K Character The same variable submitted in the request.
transaction_description 65K Character The same variable submitted in the request.
ip_address 15 NNN.NNN.NNN.NNN IP address of the client which initiated the

transaction.
first_name 50 Character The same variable submitted in the request.

*May be returned with last_name
concatenated

last_name 50 Character The same variable submitted in the request.
*May be returned concatenated in the
first_name field.

request_amount 9 Numeric Used only in partial auth. Indicates the
amount of money that the merchant
attempted to authorize the card for.
*only supported in QSAPI 3.7 and higher

error 1 Boolean True for error conditions or decline.
error_code 5 Numeric 0 for no error, > 0 for error number.

26

error_message ? Character DECLINED or textual description of other API
errors
(e.g., “Must send card_number” or “Invalid
bank_account_number”).

error_msg ? Character Deprecated (Legacy), same as error_message
account_balance_1 9 Numeric See Balance Chart below for more

information
ONLY returned when
transaction_type=BALANCE

account_balance_2 9 Numeric See Balance Chart below for more
information
ONLY returned when
transaction_type=BALANCE

account_balance_3 9 Numeric See Balance Chart below for more
information
ONLY returned when
transaction_type=BALANCE

entry_mode 9 Enumerated Indicates the mode of entry of the
transaction. Can be used instead of keyed
and swipe variables with responses of:
Keyed
Swiped
EMV
Contactless
Fallback Swiped
NFC

NOTE: For Boolean responses, if the “response_format” variable was FORM, responses will return a 1
for True and NULL for False. Other response formats will return the native Boolean response of True or
False.
	
Account Balance Inquiry (Elavon Only)
In the QSAPI request, if you use the transaction_type with a value of BALANCE, then the response is
based on the table below.

Variable Name tender_type=CARD tender_type=DEBIT tender_type=EBT
account_balance_1 Pre-paid Pre-paid Food Stamp
account_balance_2 Gift Card Gift Card Cash Benefit
account_balance_3 Loyalty Loyalty N/A

Depending on the tender_type value (also in the QSAPI request), the variable that could be returned and
the description of the balance is shown.
Example if QSAPI request has:
transaction_type=BALANCE
tender_type = DEBIT

If there is account_balance_1 returned, the value is the actual balance of the pre-paid portion remaining
on the debit card used, according to the end processor (Elavon).

27

 	

28

Transaction	Status	Interface		
The Transaction Status is a unique service that Bluefin provides for merchants to allow their systems to
reserve token IDs prior to a transaction so that our merchants can have an added level of control,
assurance and reporting for their internal applications.

The Transaction Status Interface API (TSAPI) allows our merchants to request a token ID from the Bluefin
Gateway prior to a transaction. Using the standard QSAPI process, a merchant would post a transaction
and during the response, Bluefin would provide a unique transaction ID for the merchant to use to
reference that transaction. With TSAPI, the merchant first obtains a transaction ID from TSAPI and then
provides the transaction ID along with the transaction data to QSAPI. The previously obtained
transaction ID is now the token of record for that transaction with Bluefin.

After the transaction is run, the status of the transaction can be queried. This way, if a timeout occurs,
the merchant can retry the query against TSAPI to receive the transaction success or decline details.

The added layer of assurance comes into play because since the merchant is in effect acting as the
“originating” entity for the transaction ID, the merchant can then know the applied token ID for that
transaction regardless of any timeouts in responses that may occur due to Internet connectivity issues
or other data transfer issues.

Orientation
This section describes how to obtain tokens to create a new
transaction, and to check the status of transactions after they’ve
been submitted.

When programmatically submitting transactions to a payment
gateway, it is possible that an Internet interruption or network
glitch occurs and either the transmission from your software or
the response back to your software is missed due to a host of
reasons to do with the Internet, your Internet Service Provider
(ISP) or even a temporary problem with your software or server.
While this is rare, it can occur in high volume situations.

In such a case, your software may submit a request to QSAPI and
timeout waiting to receive a response. This leaves you with the
option of retrying the transaction or not. If you retry the
transaction and it was already processed, it can result in a
duplicate transaction. If you do not retry the transaction, then it
results in a lost sale, no authorization, or manual work to research
and manage the exception. Thus, it is important to have a means
to ensure that each request receives a response, and if not, to
retry with confidence.

Did You Know?

It is not required to submit a token
when you submit a transaction into
QSAPI. When you submit a
transaction to QSAPI, you receive
back the transaction_id in the
response payload which serves as
the token for future tokenized
transaction activities. You would
pass this transaction_id through
the token_id field where
appropriate per the API.

Please note that PayConex uses the
transaction ID as the token for the
transaction, thus the terms
transaction ID and token ID are
interchangeable. We use the term
“token” to reference the use of a
transaction id for other purposes
such as tokenization, reissuing,
refunding, etc.

29

PayConex provides this transaction transmission assurance through the Transaction Status Application
Programming Interface (TSAPI).

Prior to submitting a transaction, your software would connect to TSAPI to obtain a “transaction_id”. Your
software would then pass this “transaction_id” in with the new transaction to QSAPI as a “transaction_id”.

If your system does not receive a response back, it has two options:

1) It can automatically retry the transaction and if the transaction already exists, you will receive a
duplicate transaction ID error message back. This means the original transaction went through just fine
and the transaction was not duplicated.

2) It can automatically query TSAPI as to the status of the “token_id”. If the transaction was successfully
run, then the transaction results will be returned as with a normal transaction so your software can
collect this data as normal and move on. If the transaction has never been received, then TSAPI will
return with transaction ID not found

To make a production request to TSAPI, make a URL-encoded HTTP 1.1 POST using SSL 3.0 or TLS 1.1 or greater
to https://secure.payconex.net/api/tsapi/3.8/ through Port 443.

30

TSAPI Functions
The TSAPI API is based on a single post action and API response. However, to help illustrate the entire
lifecycle of how the TSAPI API is used, we will be showing both the originating TSAPI API call that
requests the token ID, and then the separate QSAPI call that utilizes the token ID returned in the initial
TSAPI call.

Please visit the variables index below to review all of the posts that can be made through the TSAPI
interface as well as the responses that the Bluefin payment gateway will make in response to those
posts. The Appendix: Code Requests and Responses at the end of this document contain coding
examples for TSAPI Requests and Responses.

TSAPI Request Format Variables Index
Below are all the variables that can be posted to TSAPI along with a brief description of their function.

Variable Name Max Type Req'd Description

account_id 12 Numeric Yes
This is the Payconex account identification
number that you are issued after your account
has been setup.

api_accesskey 32 Alphanumeric Yes
This is a secret key that you will be provided
when your Payconex account is set up and when
you have requested access to QSAPI.

action n/a Enumerated Yes

GET_TRANSACTION_ID: Returns a transaction_id
for use with a new SALE, AUTHORIZATION,
CREDIT transaction to be passed through the
transaction_id variable.
GET_TRANSACTION_STATUS: Returns the status
of a transaction.

transaction_id 12 Numeric Yes/No Required for GET_TRANSACTION_STATUS action.
response_format 5 Enumerated No Desired response format.

FORM: www-form-urlencoded string (default
format)
JSON: JavaScript Object Notation
JSONP: JSON w/ Padding
DEBUG: human readable array output

31

TSAPI Response Format Variables Index
Below are all the variables that can be returned via TSAPI along with a brief description of their function.

Variable Name Max Type Description

transaction_id 12 Numeric The only variable returned from the
GET_TRANSACTION_ID action.

found 1 Boolean Returned from GET_TRANSACTION_STATUS action
as True if transaction is found.

transaction_id 12 Numeric
Only returned from GET_TRANSACTION_STATUS if
transaction is found. Same as the response from a
QSAPI SALE transaction_type.

transaction_approved 1 Boolean
Only returned from GET_TRANSACTION_STATUS if
transaction is found. Same as the response from a
QSAPI SALE transaction_type.

transaction_timestamp 19 YYYY-MM-DD
HH:MM:SS

Only returned from GET_TRANSACTION_STATUS if
transaction is found. Same as the response from a
QSAPI SALE transaction_type.

authorization_message 50 Alphanumeric
Only returned from GET_TRANSACTION_STATUS if
transaction is found. Same as the response from a
QSAPI SALE transaction_type.

transaction_amount 9 Numeric with
decimal

Only returned from GET_TRANSACTION_STATUS if
transaction is found. Same as the response from a
QSAPI SALE transaction_type.

cashier 100 Alphanumeric
Only returned from GET_TRANSACTION_STATUS if
transaction is found. Same as the response from a
QSAPI SALE transaction_type.

Please note: For your security, transactions older than 18 months may be purged from our system.

 	

32

Scheduling	Layer	Interface	
This section delineates the requests and responses for the
Scheduling Layer API (SLAPI). The scheduling layer enables a
merchant to create and modify recurring schedules on behalf of a
customer. The actions that can be performed with SLAPI are as
follows:

• Create a recurring schedule
• Modify the schedule of an existing recurring payment
• Modify the amount of a recurring payment
• Cancel the schedule of an existing recurring payment

Orientation
The SLAPI provides programmatic access to schedule and update recurring transactions as well as other
automatic payment gateway tasks. To request the report in production, make a URL-encoded HTTP 1.1 POST
using TLS 1.1 or greater to https://secure.payconex.net/api/slapi/3.8/ through Port 443.

API Functions
The following pages detail the types of actions that you can perform via SLAPI. Each entry briefly lists the
business functions you can perform, and code samples are located at the end of this document under
Appendix: Code Requests and Responses. A list of all protocol references can be found in two indexes
located in the last two pages of this document.

A. Create a recurring payment schedule
SLAPI allows you to create a recurring payment schedule. You can set the value of the charge, the
schedule for when the charges should occur, and the number of times you would like the recurring
transaction to occur.

SLAPI does not handle credit card numbers and bank account
information. Instead, you first tokenize the payment details using
QSAPI. You then use the token from QSAPI to setup a recurring
payment schedule.

The key components of a recurring payment are:

• Recurring schedule - use the list of acceptable values from
Appendix A

• Recurring payment amount - the dollar amount to be paid
each period

• Payments remaining - limits the number of times the
recurring payment will happen

• Start date - identifies when the initial recurring
transaction runs

TIP

You can combine any of the
following post actions to SLAPI
into a single post. The actions
are separated in the document
to provide quick access to
developers who are looking for
quick references on
performing specific actions.

TIP

If you are making a change to a
recurring schedule on the day
of a transaction, please
contact Bluefin support at
support@bluefin.com to
confirm when the recurring
transactions are scheduled to
run. Depending on when the
change is made, the recurring
payments for that day may
have already been processed.

33

• Reference Date - date recurring schedule can be calculated from. If not specified start_date will
be used.

• Status - information that tells the Bluefin scheduler whether to run the recurring transaction.

B. Modify the schedule of an existing recurring payment
You can modify the schedule of an existing recurring payment to change when the next transaction will
be processed. As previously mentioned, scheduled payments can occur on a wide variety of options, but
can be modified. You can’t specify that a payment should be made on the 29th, 30th, or 31st of each
month, since not all months have those days.

C. Modify the value of a recurring payment
You can modify the amount that a customer is charged on all their
future recurring charges. Once you modify the amount of a
transaction, you will not be able to review the historical amount
associated with the recurring transaction. If you run reporting over
a date range for the transaction charges you will be able to see the
different amounts charged but there will be no way to
retrieve/lookup an individual record via the API.

D. Disable the schedule of an existing recurring payment
You can modify a recurring transaction so that it will make no
additional charges. You can change the status of a recurring
payment at any time to DISABLED to stop future transactions.
Conversely you can also change the status of a disabled recurring
transaction to ENABLED to make it run again.

E. Cancel an existing recurring payment permanently
When you cancel a recurring payment schedule, it is basically
removed from the system (any transaction made via that schedule
are not removed). You cannot re-enable a canceled recurring
schedule, so use with caution. It must be setup as a new recurring payment.

F. Restart a recurring record marked as on-hold
When a recurring transaction cannot be processed (usually for an invalid card number), it will get
marked as “on-hold”. This stops the system from continually trying to process it. Once the issue has
been resolved (card number or expiration updated, etc.) the transaction can be “restarted”.

TIP

You can cancel a recurring
transaction using the
CANCEL action. This will
remove the recurring
transaction from being
displayed. You can change the
status of the recurring
transaction to DISABLED to
stop future recurring
transactions. The SLAPI
backend will change the
status of the recurring
transaction to FINISHED when
the posted number of
remaining transactions
reaches zero.

34

SLAPI Request Format Variables Index
The following table includes an index of all API request for SLAPI.

Variable Name Max Type Req'd Description

account_id 12 numeric Yes

This is the Payconex account
identification number that you are
issued after your account has been
set up.

api_accesskey 32 text Yes

This is a secret key that you will be
provided when your Payconex
account is set up and when you’ve
requested access to QSAPI.

action 11 enumerated Yes SETUP, EDIT, CANCEL, GET_DETAILS

status 8 enumerated No

Either ENABLED or DISABLED
Default for SETUP is ENABLED
Optional: EDIT
Not allowed: CANCEL, GET_DETAILS

token_id 12 numeric Yes/No

This is the token ID from a QSAPI
STOREd transaction.
Required: SETUP
Optional: EDIT
Not allowed: GET_DETAILS, CANCEL

recurring_id 12 numeric Yes/No

This is the recurring ID, from an
existing recurring schedule.
Required: EDIT, CANCEL,
GET_DETAILS
Not allowed: SETUP

recurring_payment_amount 9
numeric
with
decimal

Yes/No

Amount for this payment.
Required: SETUP
Optional: EDIT
Not allowed: GET_DETAILS, CANCEL

recurring_payments_remaining 5 numeric No

Number of recurring payments
remaining. 0 means no scheduled
payments remain. NULL (empty)
means payment recurs forever.
Optional: EDIT, SETUP
Not allowed: GET_DETAILS, CANCEL

recurring_schedule enumerated Yes/No

See list of acceptable values in
Appendix A.
Required: SETUP
Optional: EDIT
Not allowed: GET_DETAILS, CANCEL

start_date 10
date
(YYYY-MM-
DD)

Yes/No

Date of first recurring payment.
Required: SETUP
Optional: EDIT
Not allowed: GET_DETAILS, CANCEL

35

reference_date 10
date
(YYYY-MM-
DD)

Varies
Date recurring schedule is
calculated from. If not specified
start_date will be used.

label 50 text No

If not sent, label will be generated
automatically (first name + last
name + unique ID, space
permitting). Used for display in
Payconex.
Optional: EDIT
Not allowed: SETUP, GET_DETAILS,
CANCEL

response_format enumerated No

Desired response format.
FORM: www-form-urlencoded
(default)
JSON: JavaScript Object Notation
DEBUG: Human readable array
output

description 65K Character No A description of the payment. This
is an open field. If emails are sent to
the customer or merchant, this will
show in the “Description:” field.
You may use this to send any
information that you wish.

restart_billing 1 boolean No

Allows a restart of an "on hold"
recurring transaction record. Value
of 1 can be used in EDIT with
recurring_id to restart schedule.
Optional: EDIT
Not allowed: SETUP, GET_DETAILS,
CANCEL

36

SLAPI Response Format Variables Index
The following table includes an index of all API responses for SLAPI.

Variable Name Max Type Description
recurring_id 12 numeric Use this to EDIT or CANCEL a recurring

entry.
status 8 enumerated ENABLED: Payment will recur as scheduled.

DISABLED: Payment has been disabled and
will not recur.
CANCELED: Recurring payment has been
stopped and will not recur.
RETRYING: Payment failed, and will retry
up to the number of times in your
account's settings.
FAILED: Payment failed, and will not be
retried.
FINISHED: No more recurring payments
remain.

token_id 12 numeric This is the token from a QSAPI STOREd
transaction.

recurring_payment_amount 9 numeric with
decimal

Amount charged on next recurring
payment date

recurring_payments_remaining 3 numeric Number of recurring payments remaining.
0 means no scheduled payments remain.
NULL (or empty) means payment will recur
forever.

recurring_schedule enumerated See list of possible values in Appendix A.
recurring_schedule_description text Human-readable form of recurring

schedule. E.g., “First Monday of every
month” or “Every Friday”

start_date 10 date
(YYYY-MM-
DD)

Date of first recurring payment.

label 50 text Used for display in Payconex.
Originates from the QSAPI variable
"custom_id"

next_recurring_payment_date 10 date
(YYYY-MM-
DD)

Date of the next recurring payment.

description 65K Character The same variable submitted in the
request.

37

SLAPI Appendix A: List of Recurring Schedules

Recurring Schedule Description End Of Life
Uses
Period
Date?

PERIOD_1W Once a Week Yes
PERIOD_2W Every 2 Weeks (Bi-Weekly) Yes
PERIOD_1M Once a Month Yes
MONTHLY_1_15 1st and 15th of every month No
MONTHLY_5_20 5th and 20th of every month No
MONTHLY_LAST Last day of every month No
PERIOD_2M Every 2 Months Yes
PERIOD_3M Every 3 Months Yes
QUARTERLY_1 First day of every Quarter No
QUARTERLY_LAST Last day of every Quarter No
PERIOD_6M Every 6 Months Yes
PERIOD_1Y Once a Year Yes
YEARLY_Q1_1 Annually, every quarter 1 on the 1st No
YEARLY_Q2_1 Annually, every quarter 2 on the 1st No
YEARLY_Q3_1 Annually, every quarter 3 on the 1st No
YEARLY_Q4_1 Annually, every quarter 4 on the 1st No
MONTHLY_1 1st of every month Yes - use PERIOD_1M No
MONTHLY_2 2nd of every month Yes - use PERIOD_1M No
MONTHLY_3 3rd of every month Yes - use PERIOD_1M No
MONTHLY_4 4th of every month Yes - use PERIOD_1M No
MONTHLY_5 5th of every month Yes - use PERIOD_1M No
MONTHLY_6 6th of every month Yes - use PERIOD_1M No
MONTHLY_7 7th of every month Yes - use PERIOD_1M No
MONTHLY_8 8th of every month Yes - use PERIOD_1M No
MONTHLY_9 9th of every month Yes - use PERIOD_1M No
MONTHLY_10 10th of every month Yes - use PERIOD_1M No
MONTHLY_11 11th of every month Yes - use PERIOD_1M No
MONTHLY_12 12th of every month Yes - use PERIOD_1M No
MONTHLY_13 13th of every month Yes - use PERIOD_1M No
MONTHLY_14 14th of every month Yes - use PERIOD_1M No
MONTHLY_15 15th of every month Yes - use PERIOD_1M No
MONTHLY_16 16th of every month Yes - use PERIOD_1M No
MONTHLY_17 17th of every month Yes - use PERIOD_1M No
MONTHLY_18 18th of every month Yes - use PERIOD_1M No
MONTHLY_19 19th of every month Yes - use PERIOD_1M No
MONTHLY_20 20th of every month Yes - use PERIOD_1M No
MONTHLY_21 21st of every month Yes - use PERIOD_1M No

38

MONTHLY_22 22nd of every month Yes - use PERIOD_1M No
MONTHLY_23 23rd of every month Yes - use PERIOD_1M No
MONTHLY_24 24th of every month Yes - use PERIOD_1M No
MONTHLY_25 25th of every month Yes - use PERIOD_1M No
MONTHLY_26 26th of every month Yes - use PERIOD_1M No
MONTHLY_27 27th of every month Yes - use PERIOD_1M No
MONTHLY_28 28th of every month Yes - use PERIOD_1M No

Start Date versus Reference Date
As mentioned earlier, the Start Date (start_date) is when the recurring transaction could start, or the
date of the first recurring entry. The Reference Date (reference_date) is used on some recurring
schedules to determine the actual day or date. Period Date is optional on those recurring schedules and
if omitted, the Start Date will be used. Here are some examples to help determine how Reference Date
can be used.

Schedule Example #1:
Today is January 5th, 2015 (2015-01-05)
recurring_schedule is set to PERIOD_1M, which is once a month.
start_date is set to today (2015-01-05)

If “reference_date” is not used, the recurring transaction will run every month, on the 5th, starting
today.

If “reference_date” is entered as “2015-01-10”, then the recurring transaction will run every month, on
the 10th, starting on the 10th (5 days from now)

Schedule Example #2:
Today is January 5th, 2015 (2015-01-05), a Monday
recurring_schedule is set to PERIOD_1W, which is once a week.
start_date is set to today (2015-01-05)

If “reference_date” is not used, the recurring transaction will run every week, every Monday, starting
today.

If “reference_date” is entered as “2015-01-10” (a Saturday), then the recurring transaction will run
every week, every Saturday, starting on the 10th (5 days from now)

 	

39

Reporting	Service	
The Bluefin Reporting Service API (RSAPI) allows our merchants to securely export the transaction data
for any given day. These reports can be run to verify merchant records of transactions.

Reporting via an API call is one of the many unique and differentiating features of Bluefin’s service
offerings. All data is passed securely from Bluefin through the API, and because no unique cardholder
data is ever passed, the reports are PCI compliant.

Each report from Bluefin can be generated with comma delimited, JSON, or XML output. The reporting
data contains no card numbers, PIN blocks, or card verification values, thus it is PCI compliant.

Orientation
The RSAPI provides access to transaction reporting data by accepting a formatted request and responding with
a formatted file. To request the report in production, make a URL-encoded HTTP 1.1 POST using TLS 1.1 or
greater to https://secure.payconex.net/api/rsapi/3.8/ through Port 443.

RSAPI responds with header information in order to provide information to your program regarding the
response format and MIME/Type.

For example, for CSV files, the HTTP Header will include:
Content-type: text/csv

A custom response code is also provided within the HTTP header:
QS-response-code: NNN Message

For error conditions (Response Codes other than 100), a human-readable error message will be returned
as the body of the response:
QS-response-code: 601 Authentication failed
Account number and/or API access key is missing or invalid.

Special Note on ACH reporting:
It is important to note that ACH operates under a different business model then credit card payments.
ACH transactions utilize a different national infrastructure then credit cards. While credit cards can give
you near real time statuses on actions, ACH transactions are done in daily batches, and the financial
institutions can often take days to respond with a status to an ACH transaction.

If you are running an RSAPI report to capture your previous day’s transactions, ACH transactions will
show “BATCHED” in the “transaction_date” records. This indicates that the ACH transaction was
successfully sent at the end of the business day to the processor.

Since the reply time for an ACH transaction can vary so greatly a merchant should run a separate daily
RSAPI report to see what updates were sent back on the ACH transactions that had been previously sent
days ago. You will want to make sure to target “action_date” in your RSAPI report, and you will be able
to see any new ACH responses that were received on the previous day.

40

RSAPI	Functions	
RSAPI responds to report requests by generating a report of all transactions for a given day, or a range
of dates. RSAPI contains no unique cardholder data and as such ensures that our host organizations stay
in PCI compliance. Note that because some data is reconciled with financial institutions nightly, the
earliest a report can be run is from the previous business day. If you plan on programmatically running
automated reports for multiple single dates, the suggested time to run these reports is between 4:00
AM – 6:00 AM eastern. This time range should give you optimal server response time and should allow
enough time for the previous days records to reconcile from any west coast entities.

RSAPI Request Format Variables Index
The following table includes an index of all API request posts for RSAPI.

Variable Name Max Type Req'd Description
account_id 12 Numeric Yes This is the Payconex account identification

number that you are issued after your account
has been set up.

api_accesskey 32 Alphanumeric Yes This is a secret key that you will be provided when
your Payconex account is set up and when you’ve
requested access to QSAPI.

transaction_date
*

19 YYYY-MM-DD
HH:MM:SS

No Download transactions ran for this date (default:
yesterday).

action_date * 10 YYYY-MM-DD No Download transactions with this action date (for
ACH only; default: yesterday). This is useful for
viewing ACH updated transactions on a specific
date.

tender_type 4 Enumerated No Payment type to include in the report: ALL, CARD,
ACH, EBT, or GIFT (default: ALL).

response_format 4 Enumerated No How the resulting data is returned. Valid options
are:
CSV: Comma-separated value formatted file
(default)
JSON: JavaScript Object Notation formatted file.
XML: Extended markup language formatted file.

group * 25 Alphanumeric No Groups are flexible groups that can be used for
various reasons, including:
a) assign transactions to a specific group.
b) direct transactions to separate back-end or
depository accounts.

start_date * 10 YYYY-MM-DD No Used for getting transactions in a date range. Use
with end_date.

end_date * 10 YYYY-MM-DD No Used for getting transactions in a date range. Use
with start_date.

transaction_id 12 Numeric No The "front-end" transaction id for a transaction.
cashier * 100 Alphanumeric No The cashier that created the original transaction.
amount 10 Decimal No The amount of the original transaction. Must be

zero or positive decimal numbers.

41

amount_min 10 Decimal No The minimum amount of a transaction amount
range. Use with amount_max. Must be zero or
positive decimal numbers.

amount_max 10 Decimal No The maximum amount of a transaction amount
range. Use with amount_min. Must be zero or
positive decimal numbers.

custom_id * 50 Alphanumeric No Any custom text value that may have been used.
name 100 Alphanumeric No The name used for the customer on the original

transaction.
status 8 Enumerated No Value can be either "APPROVED" or "DECLINED"

which will return matching transactions. If
omitted, BOTH types will be returned.

batch_detail 1 Boolean No If sent as "1", batch number and batch date/time
will be returned.

reportable_fields 1 Boolean No If sent as "1", any reportable field values from HPF
(Hosted Payment Forms) will be added to the end
of the RSAPI response, with column names
mathing account setup.

 *Note: In the RSAPI requests, wildcard searches are possible for the “transaction_date”, “action_date”,
“group”, “cashier”, “custom_id”, and “name” variables. By default, all parameters are treated as exact
matches. A question mark (?) is used for a SINGLE missing character, and an asterisk (*) specifies zero or
more unknown characters.

Timestamp searching is also possible for the “transaction_date” variable. When using an asterisk (*), it is
used for any value, similar to these:
transaction_date=2018-08-??
transaction_date=2018-08-22 14:*:*
If using a timestamp, you MUST include hours, minutes, and seconds or use a wildcard for their values.

Using, or including, the “start_date” and “end_date” variables will override a “transaction_date” value,
even if “start_date” is blank. The “start_date and “end_date” variable combination should be used for
getting data from a date range, and “transaction_date” should be used for getting data for a particular
date.

If you specify a “start_date”, but include no “end_date” variable or value, it is assumed that you want all
transactions from the “start_date” to today (now).

If you specify an “end_date”, but include no value for “start_date”, it is assumed that you want all
transactions from your account start date up to the “end_date”.

If “batch_detail” is set to “0” or omitted completely, no batch ID or batch date/time will be returned.
Additional batch data is only returned if “batch_detail” is set to “1”.

42

RSAPI Response Format Variables Index
The following table includes an index of all API responses for RSAPI.

Variable Max Type Description
transaction_id 12 Numeric The transaction id for the new transaction. When

using tokenization, this is the transaction_id that
you submit as the token_id.

account_id 12 Numeric The account ID for the transactions
authorization_date 19 YYYY-MM-DD

HH:MM:SS
The date and time when the transaction was
initiated (YYYY-MM-DD HH:MM:SS)

tender_type 4 Enumerated The method of transaction that was made: CARD,
ACH, EFT, EBT, USDA, FNS, GIFT.

transaction_type 14 Enumerated Type of transaction: AUTHORIZATION, SALE,
REFUND, CREDIT, CAPTURE, SETTLE-BATCH, STORE,
FORCE.

keyed 1 Enumerated 1 indicates key entry of card information, 0
indicates not a keyed entry.

swiped 1 Enumerated 1 indicates swiped entry of card information, 0
indicates not a swiped entry.

transaction_amount 9 Numeric w/ decimal Amount of funds involved in the transaction.
name 100 Character Customer name

card_brand n/a Enumerated Customers brand of card used. VISA, MASTERCARD,
AMERICAN EXPRESS, DISCOVER, ACH, EBT.

last4 4 Numeric The last four digits of the card number or Primary
Account Number (PAN). For ACH, it is the last four
digits of the account number.

card_expiration 4 Numeric The month and year of the card expiration date in
the format MMYY. For example, 0115 for January
2015.

description 65K Character The description entered in the transaction
user_data 65K Character User data entered in the transaction.

Originates from the QSAPI variable "custom_data".

authorization_msg 50 Alphanumeric APPROVED or the auth message from the processor
(e.g. AUTH DECLINED 200).

authorization_code 6 Alphanumeric The authorization code returned by the processor.

43

avs_response 1 Enumerated A single letter address verification response:
DFJMQVXY Address and ZIP code match
LWZ ZIP code match, address is wrong
ABOP Address match, ZIP code is wrong
KN No match, address and ZIP is wrong
U No data from issuer/banknet switch
R AVS System unable to process
S Issuing bank does not support AVS
E Error, AVS not supported for your business
C Invalid address and ZIP format (International)
I Address not verifiable (International)
G Global non-verifiable address (International)
? Unrecognized codes (none of the above)
_ No AVS data (blank)

cvv2_response 1 Enumerated Single letter card verification value response:
M CVV match
N CVV does not match
P CVV not processed
S Card has CVV, customer says it doesn't
U No CVV data from issuer
? Unrecognized codes (none of the above)
_ No CVV data (blank)

ip_address 15 NNN.NNN.NNN.NNN IP address of the client which initiated the
transaction.

cashier 100 Character The cashier value from the transaction
street_address1 50 Character Customer’s street address

city 100 Character Customer’s city
state 2 Alphanumeric Customer’s state
zip 10 Numeric with hyphen Customer’s zip

country 3 Alphanumeric Customer’s country
phone 20 Alphanumeric Customer’s phone
email 100 Character Customer’s email
group 12 Alphanumeric Group value from the transaction

refund_id 12 * Numeric Refund ID from the transaction (length may be
longer if multiple refunds were ran, all refund
transaction id's separated by a pipe indicator)

refund_balance 9 Decimal Refund balance (if applicable) from the transaction
custom_id 50 Character Custom ID value from the transaction.

44

action_date 10 Date (YYYY-MM-DD) The action date indicates that an ACH update has
been applied to a previous ACH transaction. A
status response to an ACH settlement takes days to
receive. By using action_date and the date you
wish to check you can see what ACH transactions
have been updated on a specific day. Responses
are:
DECLINED\ERRORS
DECLINED\RETURNED
SETTLED\FUNDED

noc_data 50 Character The NOC data from the transaction
recurring_id 12 Numeric This unique identifier is provided in addition to the

transaction ID to allow for identifying and
segmenting recurring transactions. This variable is
in version 3.6.1 and higher.

input_group 10 Character Input group from the transaction
invoice_entry 65k Character Concatenated list of invoice line descriptiosn and

amounts, each separated by &, when invoice
feature is used for transactions.

trace_num 12 Integer back-end transaction number that might be used by
some end processors for reporting or
communication.

company 50 String Company name field from the transaction
entry_mode 17 Enumerated The value of the entry mode from the transaction:

KEYED
SWIPED
EMV
CONTACTLESS
FALLBACK SWIPED

batch_id 4 Numeric The batch number (ID) of the transaction. May be
empty if not included in a batch yet. ONLY returned
if batch_detail=1 was submitted.

batch_date 16 Character The batch date and time of the transaction. May be
empty if not included in a batch yet. ONLY returned
if batch_detail=1 was submitted.

Reportable Fields ** ? Character If "reportable_fields" was set to "1" and there are
reportable fields on the HPF (Hosted Payment
Form), those columns will be included at the end of
the response.

ach_return_code 4 alphanumeric The ACH Return Code for ACH transactions. Will
only be included for ACH transactions that have
cleared and batched (could be up to 5 days
depending on the banks).

time_zone 3 Character This is a timezone indicator for the RSAPI fields that
contain actual times. Would be similar to EST, CST,
etc (batch_date will ALWAYS be in CST)

Please note: For your security, transactions older than 18 months may be purged from our system.

45

RSAPI HTTP Response Format Variables Index
In addition to the RSAPI responses shown above, in the HTTP header of the response, you will find an
additional piece of data that you may wish to capture, called “QS-response-code”. An example of an
HTTP header for a RSAPI request is similar to the following:

HTTP/1.1 200 OK
Date: Tue, 03 Aug 2013 12:23:05 GMT
Server: Apache
QS-response-code: 601 Authentication failed
Connection: close
Vary: Accept-Encoding,User-Agent
Content-Encoding: gzip
X-Frame-Options: SAMEORIGIN
Cache-Control: private, no-cache, no-store, proxy-revalidate, no-transform
Pragma: no-cache
Content-Length: 63
Content-Type: text/html; charset=UTF-8

Values for the “QS-response-code” variable (Code and Message concatenated) are as follows:

Response
Code Response Message Description

100 OK Success. Report file follows.
601 Authentication Failed Account number and/or API access key is incorrect.

607 Invalid Date Date format is incorrect (YYYY-MM-DD) or invalid date (2009-
02-31).

608 No Data No data or transactions matched the search criteria.

611 Data Unavailable A temporary system error has prevented access to the data
requested. Please try again later or contact administrator.

621 Invalid Parameter One or more parameters do not match the RSAPI Request
Format specification.

622 Missing Parameter One or more required parameters are missing.

623 Conflicting
Parameters

Combination of parameters is invalid (e.g., specifying
action_date for card transactions).

If “QS-response-code” is NOT equal to “100 OK”, then you will receive the Description from above in the
actual response from your request.

46

Appendix:	Using	HASH	for	Authenticated	Transactions	
A hash function is an algorithm that transforms (hashes) an arbitrary set of data elements, such as a text
string or file, into a single fixed length value (the hash). The computed hash value is a means of
protecting sensitive data. Bluefin has included this functionality in to its API’s, and it uses a Secure Hash
Algorithm (SHA-256) type of hash.

There are two pieces that are tied to sending a hash; the hash value and the “hash_key” value (string),
although the “hash_key” is not always required. A description of each REQUIRED parameter in any HASH
is included below.

Parameter Req'd Description
account_id Yes This is the merchant account ID. For any hash, this MUST be included

and be the first parameter.
api_accesskey Yes This is the merchants unique “key”. It should NEVER be given out to

anyone. For any hash, this MUST be included and be the second
parameter. If it is ever sent in the hash, and outside the hash (it is sent
twice), you will receive a “Security Violation” error.

timestamp Yes This is a 10-digit UNIX timestamp representing the number of seconds
since Epoch (00:00:00 on January 1, 1970) and should represent the
time this transaction occurs. For any hash, this MUST be included and
be the third parameter.

It is possible in any transaction type to use the HASH method for more than just the required fields
(listed above). This is strictly up to the vendor/merchant, but it is recommended by Bluefin to do so. If
the merchant wishes to include other data values in the hash, they can be appended to the hash value,
but another element must be sent, called the “hash_key”, which is explained below.

Parameter Req'd Description
hash_key No A string containing a comma delimited list of parameters used to build

the hash. This list should NOT include the three parameters above, or
other parameters that are used in transparent redirect (see the
Transparent Redirect section for more information).

NOTE: All HASH parameters are case sensitive.
NOTE: When using the transparent redirect method, the HASH method is REQUIRED.

Example #1:
If the merchant wishes to send the minimum values of a hash, given the following values:

account_id :: 123456789012
api_accesskey :: e6f157d2-66cf-43d5-8a56-c4c57d5760d7

timestamp :: 1360870400

This would be the hash string:
123456789012,e6f157d2-66cf-43d5-8a56-c4c57d5760d7,1360870400

47

With a resulting hash value that is sent as something like:
b48171ba3c4ffbc1345093087d661d52a109d836462455d208f52bf7392cbf95

Example #2:
Given the same minimum values, and a transaction amount of $123.00, the hash string would look like:
123456789012,e6f157d2-66cf-43d5-8a56-c4c57d5760d7,1360870400,123.00

And the resulting hash value that is sent is something like:
c602825bed7fdc9b256ec6ce074b88e6befc18bd0eb295a9acb7af024708aedf

Note that in the above example #2 that the merchant would also have to send the following, which
would indicate the optional “hash_key” parameter is included in the hash:
hash_key = “transaction_amount”

Variables Index
When using a hash, the table below shows the variables that would be sent to QSAPI, along with the
request format variables for the given transaction type.

Parameter Req'd Description
account_id Yes This is the merchant account ID.
timestamp Yes This is a 10-digit UNIX timestamp representing the number of seconds

since Epoch (00:00:00 on January 1, 1970) and should represent the
time this transaction occurs.

hash Yes The hash value (NOT the hash string)
hash_key No Only required if additional (optional) parameters were included in the

hash string
NOTE: The parameter "api_accesskey" is NOT to be sent as a separate variable when using
transparent redirect. Doing so compromises the integrity of the data, PCI compliancy, and will result
in a "security violation" error.

NOTE: All HASH parameters are case sensitive.
NOTE: The HASH function is new in version 3.8 of the API. Prior versions do not contain this feature.

 	

48

Appendix:	Transparent	Redirect	

Overview
Transparent redirect is built on the principle of keeping sensitive PCI data off of a merchant’s web
server. Payment forms utilizing transparent redirect submit their data directly to Bluefin from the
customer’s browser so that the sensitive PCI data never touches the merchant’s servers. Bluefin
captures the transaction details, and then relays the response back to the merchant’s website where it
can be recorded, and gives control of the post-transaction user experience back to the merchant.

In addition to transparent redirect, Bluefin provides a support function that allows the merchant to
receive a post back to their servers with the transaction details. This additional feature ensures that the
merchant gets a copy of the transaction response details. The post back happens independently from
the response sent through the customer’s browser.

Configuration
This version of the API is built around allowing the merchant to have the greatest level of control over
the transparent redirect process by passing the URLs in each transaction. It also allows the merchant the
option to selectively not send URLs if they don’t wish to. So transparent redirect can be used, or not
used, at any time, with any transaction.

Transparent redirect REQUIRES the use of a hash, and the parameters required to create the hash are
indicated below:

Parameter Req'd Description
account_id Yes This is the merchant account ID. This MUST be the first parameter.
api_accesskey Yes This is the merchant’s unique “key”. It should NEVER be given out to

anyone. This MUST be the second parameter. If it is ever sent in the
hash, and outside the hash (it is sent twice), you will receive a “Security
Violation” error.

timestamp Yes This is a 10-digit UNIX timestamp representing the number of seconds
since Epoch (00:00:00 on January 1, 1970) and should represent the
time this transaction occurs. For any hash, this MUST be included and
be the third parameter.

success_url Yes A string containing a valid URL that the merchant wishes to be used for
successful transactions.
* It needs to be the 4th parameter in the hash.

decline_url No A string containing a valid URL that the merchant wishes to be used for
declined transactions.
* If used, it needs to be the 5th parameter in the hash.

49

Example #1:
If the merchant wishes to use and send transparent redirect, given the following values:

account_id :: 123456789012
api_accesskey :: e6f157d2-66cf-43d5-8a56-c4c57d5760d7

timestamp :: 1360870400
success_url:: https://www.example.com/success.aspx
decline_url:: https://www.example.com/decline.aspx

This would be the hash string:
123456789012,e6f157d2-66cf-43d5-8a56-
c4c57d5760d7,1360870400,https://www.example.com/success.aspx,
https://www.example.com/decline.aspx

With a resulting hash value that is sent is something like:
b6814a1818a0f7b3fdd0e58cd601be17be2dc5495be81279704079b6079a1ecc

Example #2:
Given the same minimum values, and a transaction amount of $123.00, the hash string would look like:
123456789012,e6f157d2-66cf-43d5-8a56-
c4c57d5760d7,1360870400,https://www.example.com/success.aspx,
https://www.example.com/decline.aspx,123.00

And the resulting hash value that is sent is something like:
3e19dacbc92fa9b1a88ce8d57c7493f374a44de35ea0b4405b7f111fb20d26d9

Note that in the above example #2 that the merchant would also have to send the following, which
would indicate the optional “hash_key” parameter is included in the hash:
hash_key = “transaction_amount”

When QSAPI receives a request it will:

Ø Detect the hash parameter in the POST.
Ø Validate timestamp has not expired (currently 30 minute life).
Ø Look for “success_url” in the POST data.
Ø Look for “declines_url” in the POST data.
Ø If found, and the URLs validate, the response data will be sent back to the client with an

HTTP/1.1 303 response header, causing the client’s browser to redirect to the success or decline
URL, as applicable.

50

Configuration (PayConex)
Transparent Redirect can also be configured inside of PayConex (Settings – Manage Settings) if desired,
but it isn’t as flexible as the above configuration method. Using this method allows the Merchant to
enter URLs for success and decline, at a global level. This allows the Merchant to leave the URLs out of
each transaction because the global setting applies to all transactions.

See the following for an example of the “Notification Rules” section containing the appropriate values:

NOTE: If you have URLs entered in the PayConex configuration screens for “global” success and decline,
sending URLs with a transaction will override the configuration settings. It is best if the URLs for
transparent redirect are sent in each transaction request, as an errant or unauthorized change to the
globally configured URLs could have a negative impact on your transaction responses.

51

Variables Index
When using transparent redirect, the table below shows the variables that would be sent to QSAPI,
along with the request format variables for the given transaction type.

Parameter Req'd Description
account_id Yes This is the merchant account ID.
timestamp Yes This is a 10-digit UNIX timestamp representing the number of seconds

since Epoch (00:00:00 on January 1, 1970) and should represent the
time this transaction occurs.

success_url Yes A string containing a valid URL that the merchant wishes to be used for
successful transactions.

decline_url No A string containing a valid URL that the merchant wishes to be used for
declined transactions.

hash Yes The hash value (NOT the hash string)
hash_key No Only required if additional (optional) parameters were included in the

hash string
NOTE: The parameter "api_accesskey" is NOT to be sent as a separate variable when using
transparent redirect. Doing so compromises the integrity of the data, PCI compliancy, and will result
in a "security violation" error.

 	

52

Appendix:			AJAX	/	CORS	Support	

Overview
The PayConex API is designed to support asynchronous methodologies, commonly referred to as
AJAX. Similar to Transparent Redirect, using AJAX will ensure that the cardholder data is never
transmitted back to your webservers or network, and thus may reduce the scope of your PCI compliance
requirements by removing transmitted cardholder data from your environment.

In order to support AJAX requests, Bluefin’s API has been extended to support CORS (Cross-Origin
Resource Sharing). This function allows pages rendered by your server to interact with the API that is
hosted by Bluefin’s servers via JavaScript.

Configuration
CORS support is enabled by default on all POST requests that do not result in a redirect (see
Appendix: Transparent Redirect). To ensure that your POST results in a formatted response and not a
redirect, and to ensure the response is returned in a format that can be parsed by JavaScript, set the
following parameters in your HTTPS POST:

Variable Name Max Type Req'd Description
disable_redirect 1 Boolean Yes Disabling redirect will override the success_url and

decline_url settings, and force the return of
transaction response in the format specified by
response_format. This setting is required for
performing API calls via AJAX.

response_format 5 Enumerated Yes In order to interpret the response using JavaScript
Object Notation, you must set the response to the
value of: JSON

Browser Support
Bluefin does not provide a client-side library, as there are numerous client-side libraries that facilitate
the passage of POST data to a form handler, and parsing of the response. By far, the most popular such
library is jQuery. Bluefin’s AJAX support has been tested to work with modern browsers that support
CORS. These browsers include: IE 10+, Firefox 3.5+, Chrome 4+, Safari 4+, iOS Safari 3.2+, Opera 12.1+,
Android 2.1+, Chrome for Android 42+, Firefox for Android 37+, IE Mobile 10+, Opera Mobile 12+, and
UC Browser for Android 9.9+

53

Sample Code (PHP and jQuery):
<?php
 // Calculate the hash before rendering page.
 // Hashed authentication is required for AJAX requests.
 // API access key should never be visible in source code.
 // See Appendix: Using HASH for Authenticated Transactions
 $account_id = "220000000000";
 $api_accesskey = "87f519105543418daea2cb6cb9945c7f";
 $timestamp = time();
 $hash_string = $account_id.",".$api_accesskey.",".$timestamp;
 $hash_value = hash("sha256",$hash_string);
?>
<!-- jQuery -->
<!-- Source: http://jquery.com/download/ -->
<script type="text/javascript" src="jquery-1.11.1.min.js"></script>
<script type="text/javascript">
 $(function(){
 // Listen for the form to be submitted
 $('#cc_form').on('submit', function(e){
 // Preventing default should stop browser from submitting the form.
 e.preventDefault();
 // Collect all the data that is going off to Bluefin
 var request_data = {
 account_id: "<?php echo $account_id; ?>",
 timestamp: "<?php echo $timestamp; ?>",
 hash: "<?php echo $hash_value; ?>",
 tender_type: "CARD",
 transaction_type: "STORE",
 transaction_amount: 0.00,
 response_format: "JSON",
 disable_redirect: 1,
 card_number: $('#cc_num').val(),
 card_expiration: $('#expiration').val(),
 card_verification: $('#cvv').val(),
 zip: $('#zip').val()
 }
 // Create an AJAX HTTPS POST request to Bluefin
 $.ajax({
 url: 'https://cert-tls12.payconex.net/api/qsapi/3.8/',
 data: request_data,
 type: 'POST',
 dataType: 'json',
 success: function(response_data){
 // If successful, parse and act based on API response
 for (key in response_data)
 $('#result').append('' + key + ': ' + response_data[key] + '');
 },

54

 error: function(error){
 // Log any error.
 console.log("ERROR:", "Request did not work.");
 }
 });
 // Return false to once again tell the
 // browser not to submit the form.
 return false;
 });
 });
</script>

 	

55

Appendix:	POSTback	

Orientation
POSTback is similar in function to Transparent Redirect, but instead of routing response data back
through the web clients browser, it sends the data directly to the merchant’s back-end system, securely,
via HTTPS POST calls. POSTback can be done in addition to transparent redirect, or independently of
transparent redirect.

Implementation steps:
You first need to log into your account and modify the Merchant Account Setup/Configuration.

From the PayConex account settings (Settings – Manage Settings) page, you can view and modify the
following (in the Notification Rules section):
Enable/Disable POSTback radio buttons. Click Enable to reveal the URL field
POSTback URL – enter a valid HTTPS URL to receive POSTback data.

No change to the QSAPI implementation code is required.

56

Custom Process Flow
QSAPI requests are handled normally from the receipt of a request through the normal submission
process.

When the QSAPI reply is ready, if “POSTback RESPONSE” is enabled in the merchant’s account, and a
valid “POSTback URL” has been entered, QSAPI will do the following:

Ø Store the transaction Postback data into a Messaging Queue.
Ø Trigger an asynchronous posting of the transaction to the merchant’s Postback URL.
Ø Include a validation hash to send with the Postback data, comprised of the following:

account_id
api_accesskey
timestamp

If a connection cannot be made to the merchant’s “Postback URL”, the Postback messaging sub-system
will continue to retry the Postback periodically (interval TBD).

Upon successful connection and transmission, the messaging sub-system will record the response from
the merchant’s system and tag the Postback as complete.

Because the Postback actually happens asynchronously, there is no delay in the response to the
customer/client.

POSTback Response Payload
The POSTback response payload is a structured data object. It is comprised of five (5) main components:

Ø account_id The merchant Payconex account ID
Ø timestamp The UNIX timestamp of the POSTback
Ø count The number of transaction responses being sent
Ø hash The authentication hash (see above for description)
Ø responses An array of transaction responses. For the typical merchant this array will

contain only one transaction. Merchants utilizing Enhanced Payment Pages, or performing Split
Transactions via QSAPI, would receive multiple responses bundled together.

The data format of the POSTback response can be controlled by passing a “response_format” parameter
in the original transaction request. The following payload formats are supported:

Ø FORM HTTP query string key=value pairs (default)
Ø JSON (recommended)
Ø XML (pending)

POSTback responses will contain the same variables as the QSAPI response, just a different data format;
however, it will also contain the account_id, timestamp, count, and a hash in case you need it. The hash
is included so you can verify that the data sent back actually came from Bluefin. See example below.

57

POSTback Example Response
A typical POSTback payload could look like this (JSON format used):

{
 "account_id":"120908675309",
 "timestamp":1374346390,
 "count":1,
 "hash":"d3a0b8cddacab6b761fd61d9176013e9287384848b052362b6b4bc090a257c6a",
 "responses":[
 {
 "transaction_id":"000282870523",
 "tender_type":"CARD",
 "transaction_timestamp":"2018-07-20 13:53:09",
 "card_brand":"VISA",
 "transaction_type":"SALE",
 "last4":"4321",
 "card_expiration":"1218",
 "authorization_code":"096932",
 "authorization_message":"APPROVED",
 "request_amount":"345.98",
 "transaction_amount":"345.98",
 "first_name":"Robert",
 "last_name":"Smith",
 "keyed":"1",
 "swiped":"",
 "transaction_approved":"1",
 "cvv2_response":"N",
 "error":"",
 "error_code":"0",
 "error_message":"",
 "error_msg":"",
 "customer_feedback":"",
 "description":"Widgets: P/N BA-0523-C"
 "custom_id":"Customer 1234567890"
 "custom_data":"Widget BA-0523-C – Customer 1234567890"

 }
]
}

 	

58

Appendix:	Transaction	Flow	Diagrams	
The images that follow are various ways that transactions can flow from a Merchant to the client, to
Bluefin, and back, depending on the configuration.

59

60

 	

61

Appendix:	Point	to	Point	Encryption	

Overview:
Point to Point Encryption (P2PE) allows the merchant the ability to safeguard their customer’s data from
the point of capture all the way through its delivery to Bluefin.

Bluefin approved encryption devices such as the SecuRED and M130 encrypt the data at the reader.
This ensures that only encrypted data leaves the capture device and enters the merchant’s computer via
the USB connector. The encrypted data cannot be decrypted locally. It can only be decrypted once
safely on the Bluefin servers.

The encryption device does however allow for PCI approved data such as the card holders name, first
four of the card, last four of the card, and expiration date to be shown for you to capture if needed.

Orientation:
Bluefin supports several devices for card swipe or keyed entry. Popular choices among P2PE devices are
the SecuRED and SHRED devices, and for E2E encryption, the M100 and M130. For mobile applications,
Bluefin supports the Shuttle device for E2E encryption and the forthcoming Prima M device for P2P
encryption means form a mobile platform.

They all function as keyboard emulators. Their output can be targeted in the exact same way the output
of a keyboard can be targeted. The M100 is a key entry only device. The SHRED and the M130 are both
a keyed entry and a card swipe device. The SecuRED is a card swipe only device. Both of the mobile
devices are swipe only, audio jack, devices.

When accepting card swipe or keyed input from an encrypted POI terminal such as the M100 or M130,
the data is captured directly as keyboard input, as if someone had typed it into your application. In
order to ensure that these “keystrokes” are recorded into the correct field, the merchant application
must have keyboard focus on the field that will receive the input.

For a web form, you can use HTML code such as the following to place the keyboard focus on the
appropriate form field as soon as the page loads:

<body onLoad="document.getElementById('encryptedpayload').focus();">

Elsewhere, in the form itself, there should be an input field using the same name (in this example, we
have used “encryptedpayload”, although the name of the field could be anything). We recommend
using a “password” input type because the encrypted output does not need to be visible and may create
confusion to the user. Here is a simple example:

<input type="password" name="encryptedpayload">

In order to successfully submit a swiped transaction, you will need to pass the encrypted output in its
entirety. You can pass it using the variable “card_tracks”. For swipe transactions, you do not need to

62

supply the card_number, card_expiration, first_name, last_name or card_verification fields, as these are
included in the encrypted data.

In order to successfully submit a keyed transaction, you will need to pass the encrypted output in its
entirety. You can pass it using the variable “card_number”. For keyed transactions, you do not need to
supply the card_number, card_expiration, or card_verification fields, as these are included in the
encrypted data. The first_name, last_name fields are not generally required unless they are explicitly
required by the processor.

*Please note with keyed entries, the M100 and M130 will prompt you for additional card fields.

Note: If you are using Transparent Redirect, we recommend creating two separate pages or payment
sections related to swipe or keyed transactions and allow the cashier to select the appropriate field
before swiping or keying the credit card information.

The M100 & M130 outputs their data in an encrypted format. Please note that other than the “in the
clear” data elements listed below, no other components of the output should be stored. The remaining
output will not be able to be decrypted, and any submissions over the API of a partial output will cause a
failed submission.

For swiped transactions, the output data is comprised of encrypted card data and the following “in the
clear” elements.
Card holders name = CHolder
First four and last four card digits = MskPAN
Card expiration = Exp

For keyed entries, there are several options available on the M100 and M130 device to choose from.
The M100 and M130, by default, are set to Configuration #1, but can be adjusted to support up to 5
different formats if you wish to use a different one. All possible configurations are listed below, but
Bluefin recommends configuration #1 (default) or #4.

Configuration #1 (Recommended Configuration)
First four and last four card digits = MskPAN
Card expiration = Exp

Configuration #2
First four and last four card digits = MskPAN
Card expiration = Exp
Zip code = AVSZip

63

Configuration #3
First four and last four card digits = MskPAN
Card expiration = Exp
Street number of the Address = AVSAddr (not utilized by Bluefin for processing, or stored)
Zip code = AVSZip

Configuration #4 (Recommended Configuration)
First four and last four card digits = MskPAN
Card expiration = Exp
Zip code = AVSZip (not utilized by Bluefin for processing or stored)
Security code = ***
*This configuration asks for the CVV2 security code, but it is encrypted and not included in the output.

Configuration #5
First four and last four card digits = MskPAN
Card expiration = Exp
Street number of the Address= AVSAddr (not utilized by Bluefin for processing or stored)
Zip code = AVSZip (not utilized by Bluefin for processing or stored)
Security code = ***
*This configuration asks for the CVV2 security code, but it is encrypted and not included in the output.

To modify the configurations on your M100 and M130 unit, press the “Admin” key. The screen will
display “Select Config 1-5.” Simply hit the number on the keypad indicating the configuration you want,
and then press Enter. Again, Bluefin recommends Configuration #1, or optionally #4.

Variables Index
The following table includes an index of the API request variables for point to point encryption (P2PE) or
end to end encryption (E2EE):

Variable Name Max Type Description
card_tracks Alphanumeric This allows for the submission of the entire data payload

from a swipe produced on an encrypted device such as
the M100 or M130.

card_number Alphanumeric This allows for the submission of the entire data payload
from a keyed entry produced on an encrypted device
such as the M100 or M130.

There are no unique responses for submissions sent using encrypted data.

64

Appendix:	Best	Practices	

Utilizing responses
Response checking /error handling:
Merchants should make sure that all responses messages from Bluefin are captured and utilized to
confirm a successful transaction.

Utilizing reporting
Daily Reporting:
RSAPI reports return all transactions from a 24-hour period. RSAPI reports should not be run for the
current day because too many transaction statuses are subject to change until all batches for that day
are settled at the end of the day.

ACH Reporting:
As mentioned previously in this document, ACH transactions can take several days and sometimes even
weeks to update their statuses. As a matter of practice merchants should setup a daily report to check
for any ACH statuses that changed, so they can update their own records. To do so, run an RSAPI report
using “action_date”. The report will show you the data for all transaction confirmations that were
received from the previous day.

Recurring reporting:
Starting with version 3.6.1 of QSAPI, it returns a recurring ID (“recurring_id”) that merchants can use to
segment out their recurring transactions from their standard transactions. This extra ID is in addition to
the standard transaction ID. For many of our older API users who wish to have recurring IDs shown in an
RSAPI report the switch to a newer version can usually be easily accommodated. Contact
support@bluefin.com to find out what would need to be modified for an upgrade.

Parsing the data:
The data should be parsed using field names. It should not be based on the incremental position of data
rows. Future versions of RSAPI may include new field names or exclude previous field names, and
parsing based on incremental values could lead to internal migration complexities for merchants.

Card capture
Identifying a card brand:
Issuer identification numbers are used to identify which card issuing company a particular card belongs
to. You can determine this by checking the first few numbers of a credit card.

 Visa – Starts with 4
 Mastercard – Starts with numbers 51-55
 American Express – Starts with 34, 37
 Discover – Starts with 6011, 622126-622925, 644-649, 65

JCB – Starts with 3528-3589

65

Verifying if a credit card is a valid number prior to submitting a transaction:
All credit card numbers can be proven as being a valid credit card number by running a “Mod 10” or
“Luhn algorithm” against a card number. Some merchants choose to verify a card prior to submission,
to reduce the number of declined transactions that they receive. This practice is typically handled by a
java script. Numerous examples of scripts that handle “Mod 10” can be found on the internet. Bluefin
does not require merchants to perform a “Mod 10” check prior to submitting a card.

Error messages:
When coding your applications, please note that the wording on error handling responses are subject to
change.

Zero Dollar ($0) Authorizations
When the Merchant issues a $0 authorization thru the API, depending on the end processor, Bluefin
may register the $0 authorization but in reality, is sending a $1 authorization to the processor, receiving
approval from the processor, passing the approval to the Merchant and at the same time, automatically
issuing a reversal of the $1 authorization. So, it is possible that the actual cardholder could see a $1
authorization on their card, even though the authorization was reversed and in effect, cancelled.

URL Encoding
If you do not use the Bluefin PHP class in interacting with the API’s, the data element values that are
sent must meet the “URL Encoding” standards.

URL Encoding is the process of converting string(s) into a valid URL format. Valid URL format means that
the URL contains only what is termed as "alpha, digit, safe, extra, escape" characters, replacing “unsafe
ASCII” characters with a “%” followed by two hexadecimal digits.

URL encoding is normally performed to convert data passed via html forms, because such data may
contain special character, such as "/", ".", "#", and so on, which could either: a) have special meanings;
or b) is not a valid character for an URL; or c) could be altered during transfer. For instance, the "#"
character needs to be encoded because it has a special meaning of that of an html anchor. The <space>
character also needs to be encoded because is not allowed on a valid URL format. Also, some
characters, such as "~" might not transport properly across the internet.

 	

66

Appendix:	Request	and	Response	Codes	
Overview
There are several ways to access Bluefin's APIs. You are free to choose whichever method works best for
your development environment. The following examples are intended to show you the basic structure
of posts and responses. Since many of our merchants use PHP, the following examples were formatted
for use with PHP.

If you are using PHP, we recommend you use our simple PHP classes to call the APIs. Please see the
sample PHP script below:

<?php
header('Content-type: text/plain');

require_once('includes/qsapi-post-3.8.class.php');
$qs = new QuickSwipePost();

$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'SALE',
 'transaction_amount' => 176.58,
 'transaction_description' => 'Test transaction',
 'card_number' => '4444333322221111',
 'card_expiration' => '0315',
 'card_verification' => '315',
 'first_name' => 'John',
 'last_name' => 'Smith',
 'street_address1' => '123 Main St',
 'city' => 'Anytown',
 'state' => 'NY',
 'zip' => '10101',
 'phone' => '212-555-1212',
));

$qs->process();
$response = $qs->getResponse();

if ($response['error']) {
 echo "There was an error processing your payment.\n";
 echo "The error message was $response[error_message].\n";
 if (!empty($response['authorization_message'])) {
 echo "The authorization message was $response[authorization_message].\n";
 }
} else {
 echo "Your transaction was approved!\n";

67

 echo "Here is your receipt.\n";
 echo "Transaction ID $response[transaction_id]\n";
 echo "Tender type $response[tender_type]\n";
 echo "Date/time $response[transaction_timestamp]\n";
 echo "Transaction type $response[transaction_type]\n";
 echo "Transaction amount " . sprintf('%.2f', $response['transaction_amount']) . "\n";
 echo "Last 4 $response[last4]\n";
 if ($response['tender_type'] === 'CARD') {
 echo "Card type $response[card_brand]\n";
 echo "Card expiration $response[card_expiration]\n";
 }
 if (!empty($response['transaction_description'])) echo "\nTransaction
description:\n$response[transaction_description]\n";
}
?>

NOTE: Use of the PHP class does not support transparent redirect.

68

Code Samples
To demonstrate another way to call the APIs, here are other examples, using curl, demonstrating the
different response formats available.

Note: The URLs shown in the post examples below are the current standards. Previous URLs that were
accepted in earlier API versions (like: “cert.quickswipe.com”) will still function as they always have and
could be changed to the current standards over time.

Post a sale, using the default www-form-urlencoded format
curl -s -d account_id=000000000001 -d api_accesskey=abcdef123456 -d tender_type=CARD -d
transaction_type=SALE -d transaction_amount=176.58 -d transaction_description='Test transaction' -d
card_number=4444333322221111 -d card_expiration=0315 -d card_verification=315 -d
first_name=John -d last_name=Smith -d street_address1='123 Main St' -d city=Anytown -d state=NY -d
zip=10101 -d phone=212-555-1212 https://secure.payconex.net/api/qsapi/3.8/

Response
transaction_id=000000000057&tender_type=CARD&transaction_timestamp=2012-06-
21%2015%3A46%3A57&card_brand=VISA&transaction_type=SALE&last4=1111&card_expiration=0315
&authorization_code=094292&authorization_message=APPROVED&transaction_amount=176.58&first_
name=John&last_name=Smith&keyed=1&swiped=&transaction_approved=1&avs_response=Y&transact
ion_description=Test%20transaction&error=&error_code=0&error_message=&error_msg=

Post a sale, using the JSON format
curl -s -d account_id=000000000001 -d api_accesskey=abcdef123456 -d tender_type=CARD -d
transaction_type=SALE -d transaction_amount=176.58 -d transaction_description='Test transaction' -d
card_number=4444333322221111 -d card_expiration=0315 -d card_verification=315 -d
first_name=John -d last_name=Smith -d street_address1='123 Main St' -d city=Anytown -d state=NY -d
zip=10101 -d phone=212-555-1212 -d response_format=JSON https://secure. payconex.net
/api/qsapi/3.8/

Response
{"transaction_id":"000000000059","tender_type":"CARD","transaction_timestamp":"2012-06-21
15:49:48","card_brand":"VISA","transaction_type":"SALE","last4":"1111","card_expiration":"0315","aut
horization_code":"094355","authorization_message":"APPROVED","transaction_amount":176.58,"first_
name":"John","last_name":"Smith","keyed":true,"swiped":false,"transaction_approved":true,"avs_resp
onse":"Z","transaction_description":"Test
transaction","error":false,"error_code":0,"error_message":null,"error_msg":null}

Post a sale, using the JSONP format
curl -s -d account_id=000000000001 -d api_accesskey=abcdef123456 -d tender_type=CARD -d
transaction_type=SALE -d transaction_amount=176.58 -d transaction_description='Test transaction' -d
card_number=4444333322221111 -d card_expiration=0315 -d card_verification=315 -d
first_name=John -d last_name=Smith -d street_address1='123 Main St' -d city=Anytown -d state=NY -d
zip=10101 -d phone=212-555-1212 -d response_format=JSONP -d jsonp=c_func https://secure.
payconex.net /api/qsapi/3.8/

69

Response
c_func({"transaction_id":"000000000059","tender_type":"CARD","transaction_timestamp":"2012-06-21
15:49:48","card_brand":"VISA","transaction_type":"SALE","last4":"1111","card_expiration":"0315","aut
horization_code":"094355","authorization_message":"APPROVED","transaction_amount":176.58,"first_
name":"John","last_name":"Smith","keyed":true,"swiped":false,"transaction_approved":true,"avs_resp
onse":"Z","transaction_description":"Test
transaction","error":false,"error_code":0,"error_message":null,"error_msg":null})

Post a sale, using the DEBUG output (which is used in all samples below)
curl -s -d account_id=000000000001 -d api_accesskey=abcdef123456 -d tender_type=CARD -d
transaction_type=SALE -d transaction_amount=176.58 -d transaction_description='Test transaction' -d
card_number=4444333322221111 -d card_expiration=0315 -d card_verification=315 -d
first_name=John -d last_name=Smith -d street_address1='123 Main St' -d city=Anytown -d state=NY -d
zip=10101 -d phone=212-555-1212 -d response_format=DEBUG https://secure. payconex.net
/api/qsapi/3.8/

Response

array (
 'transaction_id' => '000000000060',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2012-06-21 15:50:49',
 'card_brand' => 'VISA',
 'transaction_type' => 'SALE',
 'last4' => '1111',
 'card_expiration' => '0315',
 'authorization_code' => '094387',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 176.58,
 'first_name' => 'John',
 'last_name' => 'Smith',
 'keyed' => true,
 'swiped' => false,
 'transaction_approved' => true,
 'avs_response' => 'A',
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

70

QSAPI
Example request for post a sale (Keyed)
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'SALE',
 'transaction_amount' => 176.58,
 'transaction_description' => 'Test transaction',
 'card_number' => '4444333322221111',
 'card_expiration' => '0315',
 'card_verification' => '315',
 'first_name' => 'John',
 'last_name' => 'Smith',
 'street_address1' => '123 Main St',
 'city' => 'Anytown',
 'state' => 'NY',
 'zip' => '10101',
 'phone' => '212-555-1212',
));

Example response for post a sale (Keyed)
array (
 'transaction_id' => '000000000027',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2012-06-20 11:09:54',
 'card_brand' => 'VISA',
 'transaction_type' => 'SALE',
 'last4' => '1111',
 'card_expiration' => '0315',
 'authorization_code' => '090047',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 176.58,
 'first_name' => 'John',
 'last_name' => 'Smith',
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',
 'transaction_approved' => true,
 'avs_response' => 'U',
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

71

Example request for post a sale (Swiped)
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'SALE',
 'transaction_amount' => 176.58,
 'transaction_description' => 'Test transaction',
 'card_tracks' => '<DvcMsg Ver="1.1"><Dvc App="SecureKey Software" AppVer="1.0" DvcType="M130-
IDTECH" DvcSN="54122505007" Entry="SWIPE"></Dvc><Card CEncode="0"
ETrk1="CD42D06BF708D44F847E5B561E68B3C920EAFA5943F63131D2CA09D9E69EE522CD8E69FA9394
385CE5A214F466F6315CA0F9DC12330B88E301DC
7BAE2EC752B109D97B5152F425A6639CB2AB4BB981DE"
ETrk2="07A7782E3BDBD50FE7A6F03E1E294AEBCD8C222AD5CDBA725FFFFDFE71E9BACB04FE4284B32
12132" CDataKSN="629949123B00018001F0" Exp="1604" MskPAN="4012********1111"
CHolder="ABCD TEST CARD /VISA" EFormat="4"></Card><Addr></Addr><Tran
TranType="CREDIT"></Tran></DvcMsg>'
));

Example response for post a sale (Swiped)
array (
 'transaction_id' => '000000000023',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-05-23 11:23:23',
 'card_brand' => 'VISA',
 'transaction_type' => 'SALE',
 'last4' => '1111',
 'card_expiration' => '0416',
 'authorization_code' => '090047',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 176.58,
 'first_name' => 'John',
 'last_name' => 'Smith',
 'keyed' => false,
 'swiped' => true,
 'entry_mode' => 'swiped',
 'transaction_approved' => true,
 'avs_response' => 'U',
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

72

Example request for post a sale with level 2 data
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'SALE',
 'transaction_amount' => 176.58,
 'transaction_description' => 'Test transaction',
 'card_number' => '4444333322221111',
 'card_expiration' => '0315',
 'card_verification' => '315',
 'first_name' => 'John',
 'last_name' => 'Smith',
 'street_address1' => '123 Main St',
 'city' => 'Anytown',
 'state' => 'NY',
 'zip' => '10101',
 'phone' => '212-555-1212',
 ‘level2_tax' => ’21.18,
 ‘level2_merchant_reference' => 'Just because',
 ‘level2_zip' => '12345',
 ‘level2_orderid' => '123456789012345',
));

Example response for post a sale with level 2 data
array (
 'transaction_id' => '000000000027',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-06-20 11:09:54',
 'card_brand' => 'VISA',
 'transaction_type' => 'SALE',
 'last4' => '1111',
 'card_expiration' => '0315',
 'authorization_code' => '090047',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 176.58,
 'first_name' => 'John',
 'last_name' => 'Smith',
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',
 'transaction_approved' => true,
 'avs_response' => 'U',
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,

73

 'error_msg' => NULL,
)

Example request for pre-authorization for a card not on file and without a token
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'AUTHORIZATION',
 'transaction_amount' => 176.58,
 'card_number' => '4444333322221111',
 'card_expiration' => '0315',
 'card_verification' => '315',
));

Example response request for pre-authorization for a card not on file and without a token
array (
 'transaction_id' => '000000000039',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-06-20 15:33:50',
 'card_brand' => 'VISA',
 'transaction_type' => 'AUTHORIZATION',
 'last4' => '1111',
 'card_expiration' => '0315',
 'authorization_code' => '099105',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 176.58,
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',
 'transaction_approved' => true,
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request for pre-authorization for a card on file with a token
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'AUTHORIZATION',
 'transaction_amount' => 18,
 'token_id' => '000000000027',
 'reissue' => true,
));

74

Example response request for pre-authorization for a card on file with a token
array (
 'transaction_id' => '000000000040',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-06-20 15:35:13',
 'card_brand' => 'VISA',
 'transaction_type' => 'AUTHORIZATION',
 'last4' => '1111',
 'card_expiration' => '0315',
 'authorization_code' => '099182',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 18,
 'first_name' => 'John Smith',
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',
 'transaction_approved' => true,
 'avs_response' => 'U',
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request for post a capture
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'transaction_type' => 'CAPTURE',
 'token_id' => '000000000040',
));

Example response for post a capture
array (
 'transaction_id' => '000000000027',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-06-20 11:09:54',
 'card_brand' => 'VISA',
 'transaction_type' => 'SALE',
 'last4' => '1111',
 'card_expiration' => '0315',
 'authorization_code' => '090047',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 176.58,
 'first_name' => 'John',
 'last_name' => 'Smith',
 'keyed' => true,

75

 'swiped' => false,
 'entry_mode' => 'keyed',
 'transaction_approved' => true,
 'avs_response' => 'U',
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request for posting a reissue of a sale
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'SALE',
 'transaction_amount' => 176.58,
 'transaction_description' => 'Test transaction',
 'first_name' => 'John',
 'last_name' => 'Smith',
 'street_address1' => '123 Main St',
 'city' => 'Anytown',
 'state' => 'NY',
 'zip' => '10101',
 'phone' => '212-555-1212',
 'token_id' => '000000000027',
 'reissue' => 1,
));

Example response for posting a reissue of a sale
array (
 'transaction_id' => '000000000027',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-06-20 11:09:54',
 'card_brand' => 'VISA',
 'transaction_type' => 'SALE',
 'last4' => '1111',
 'card_expiration' => '0315',
 'authorization_code' => '090047',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 176.58,
 'first_name' => 'John',
 'last_name' => 'Smith',
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',

76

 'transaction_approved' => true,
 'avs_response' => 'U',
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request for posting a refund
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'transaction_type' => 'REFUND',
 'token_id' => '000000000041',
));

Example response for posting a refund
array (
 'original_transaction_id' => '000000000041',
 'transaction_id' => '000000000042',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-06-20 15:39:26',
 'card_brand' => 'VISA',
 'transaction_type' => 'REFUND',
 'last4' => '1111',
 'card_expiration' => '0315',
 'authorization_message' => 'VOID',
 'transaction_amount' => 25,
 'first_name' => 'John Smith',
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',
 'transaction_approved' => true,
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request for posting a credit
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'CREDIT',
 'transaction_amount' => 100,

77

 'card_number' => '4444333322221111',
 'card_expiration' => '0315',
 'card_verification' => '315',
));

Example response for posting a credit
array (
 'transaction_id' => '000000000043',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-06-20 15:42:37',
 'card_brand' => 'VISA',
 'transaction_type' => 'CREDIT',
 'last4' => '1111',
 'card_expiration' => '0315',
 'authorization_message' => 'CREDIT',
 'transaction_amount' => 100,
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',
 'transaction_approved' => true,
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request for posting a force
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'FORCE',
 'authorization_code' => '123456',
 'transaction_amount' => 12.5,
 'card_number' => '4444333322221111',
 'card_expiration' => '0315',
 'card_verification' => '315',
));

Example response for posting a force
array (
 'transaction_id' => '000000000044',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-06-20 16:14:04',
 'card_brand' => 'VISA',
 'transaction_type' => 'FORCE',
 'last4' => '1111',
 'card_expiration' => '0315',

78

 'authorization_code' => '123456',
 'authorization_message' => 'FORCE',
 'transaction_amount' => 12.5,
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',
 'transaction_approved' => true,
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request for storing a card
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'STORE',
 'card_number' => '4444333322221111',
 'card_expiration' => '0315',
));

Example response for storing a card
array (
 'transaction_id' => '000000000045',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-06-20 16:15:13',
 'card_brand' => 'VISA',
 'last4' => '1111',
 'card_expiration' => '0315',
 'transaction_amount' => 0,
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',
 'transaction_approved' => false,
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request for post a sale (with partial authorization)
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'SALE',

79

 'transaction_amount' => 176.58,
 'transaction_description' => 'Test transaction',
 'card_number' => '4444333322221111',
 'card_expiration' => '0315',
 'card_verification' => '315',
 'first_name' => 'John',
 'last_name' => 'Smith',
 'street_address1' => '123 Main St',
 'city' => 'Anytown',
 'state' => 'NY',
 'zip' => '10101',
 'phone' => '212-555-1212',
));

Example response for post a sale (with partial authorization)
array (
 'transaction_id' => '000000000027',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-06-20 11:09:54',
 'card_brand' => 'VISA',
 'transaction_type' => 'SALE',
 'last4' => '1111',
 'card_expiration' => '0315',
 'authorization_code' => '090047',
 'authorization_message' => 'APPROVED FOR LESSER AMOUNT',
 'request_amount' => 176.58,
 'transaction_amount' => 100.00,
 'first_name' => 'John',
 'last_name' => 'Smith',
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',
'transaction_approved' => true,
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request for reversal of an authorization
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'transaction_type' => 'REVERSAL',
 'token_id' => '000000000051',
));

80

Example response for reversal of an authorization
array ('original_transaction_id' => '000000000051',
 'transaction_id' => '000000000052',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-08-06 09:42:03',
 'card_brand' => 'VISA',
 'transaction_type' => 'REVERSAL',
 'last4' => '1111',
 'card_expiration' => '0320',
 'authorization_code' => '111111',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 1.0,
 'first_name' => 'John Smith',
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',
 'transaction_approved' => true,
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request for cancel of a refund
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'transaction_type' => 'CANCEL',
 'token_id' => '000000000061',
));

Example response for cancel of a refund
array ('original_transaction_id' => '000000000061',
 'transaction_id' => '000000000062',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-08-06 09:44:03',
 'card_brand' => 'VISA',
 'transaction_type' => 'CANCEL',
 'last4' => '1111',
 'card_expiration' => '0320',
 'authorization_code' => '111111',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 1.0,
 'first_name' => 'John Smith',
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',

81

 'transaction_approved' => true,
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request for a Sale using an eToken
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'tender_type' => 'CARD',
 'transaction_type' => 'SALE',
 'transaction_amount' => 176.58,
 'transaction_description' => 'Test transaction',
 ‘etoken' => 'RzjHUvuvbOIfZLaDvNm-
2Aq6_rQ0vzqqa3_0hRNu_NvptjsuyWAPV5yrB2RZthgfHorU_6Grj8qqIgQf_FgH0shvS3FWwSKioSCx2uDaG
gSTTZD18ZvdDCdjpFAaKzUznvGvSmo20z4cLh-fGZO32c4Yrm-er-
RnfteB0pjqWfi39ggox65AQ03BWikCvFPOPe7VEYIfHMGF4Vt3cGDEw4YAp13ANjf_'

Example response for a Sale using an eToken
array (
 'transaction_id' => '000000000023',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-05-23 11:23:23',
 'card_brand' => 'VISA',
 'transaction_type' => 'SALE',
 'last4' => '1111',
 'card_expiration' => '0416',
 'authorization_code' => '090047',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 176.58,
 'first_name' => '',
 'last_name' => '',
 'keyed' => true,
 'swiped' => false,
 'entry_mode' => 'keyed',
 'transaction_approved' => true,
 'avs_response' => '',
 'transaction_description' => 'Test transaction',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

82

TSAPI
Example request
$ts->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'action' => 'GET_TRANSACTION_ID',
));

Example response
array (
 'transaction_id' => '000000000050',
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)

Example QSAPI post, using fetched transaction ID
$qs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'transaction_id' => '000000000050',
 'tender_type' => 'CARD',
 'transaction_type' => 'SALE',
 'transaction_amount' => 29.5,
 'card_number' => '4444333322221111',
 'card_expiration' => '0315',
 'card_verification' => '315',
));

Example QSAPI response, using fetched transaction ID
array (
 'transaction_id' => '000000000050',
 'tender_type' => 'CARD',
 'transaction_timestamp' => '2018-06-20 17:29:13',
 'card_brand' => 'VISA',
 'transaction_type' => 'SALE',
 'last4' => '1111',
 'card_expiration' => '0315',
 'authorization_code' => '092113',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 29.5,
 'keyed' => true,
 'swiped' => false,
 'transaction_approved' => true,
 'error' => false,
 'error_code' => 0,

83

 'error_message' => NULL,
 'error_msg' => NULL,
)

Example request to get transaction status
$ts->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'action' => 'GET_TRANSACTION_STATUS',
 'transaction_id' => '000000000050',
));

Example response to get transaction status
array (
 'transaction_id' => '000000000050',
 'transaction_timestamp' => '2018-06-20 17:29:13',
 'authorization_message' => 'APPROVED',
 'transaction_amount' => 29.5,
 'cashier' => 'QSAPI 3.8',
 'transaction_approved' => true,
 'found' => true,
 'error' => false,
 'error_code' => 0,
 'error_message' => NULL,
 'error_msg' => NULL,
)
 	

84

SLAPI
Example request for new recurring payments
Note: For documentation purposes, these examples use the DEBUG response format, since it is more
easily readable. In actual usage, you will generally use one of the machine-readable formats, such as
FORM or JSON.

$sl->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'action' => 'SETUP',
 'token_id' => '000000000054',
 'recurring_payment_amount' => 20,
 'recurring_payments_remaining' => NULL,
 'recurring_schedule' => 'WEEKLY_MON',
 'start_date' => '2018-08-01',
));

Example response for recurring payments
$sl->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'action' => 'SETUP',
 'token_id' => '000000000054',
 'recurring_payment_amount' => 20,
 'recurring_payments_remaining' => NULL,
 'recurring_schedule' => 'WEEKLY_MON',
 'start_date' => '2018-08-01',
));

Example request for modifying the schedule of an existing recurring payment
Note: The token_id is the value that was returned when you setup the recurring transaction initially.
There is no need to pass values that do not need to be changed (e.g., recurring_payment_amount).
$sl->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'action' => 'EDIT',
 'recurring_id' => 7,
 'recurring_payment_amount' => 25,
 'recurring_schedule' => 'WEEKLY_TUE',
));

Example response for modifying the schedule of an existing recurring payment
array (
 'recurring_id' => 7,
 'token_id' => '000000000054',
 'recurring_schedule' => 'WEEKLY_TUE',
 'recurring_payment_amount' => 25,

85

 'status' => 'ENABLED',
 'label' => 'Recurring entry - 1340295974',
 'recurring_payments_remaining' => NULL,
 'start_date' => '2018-08-01',
 'recurring_schedule_description' => 'Every week on Tuesday',
 'next_recurring_payment_date' => '2018-08-01',
 'error' => false,
 'error_code' => 0,
 'error_msg' => NULL,
 'error_message' => NULL,
)

Example post for modifying the value of a recurring payment
$sl->setParams(array (
 'recurring_id' => 1,
 'token_id' => '000000000010',
 'recurring_schedule' => 'WEEKLY_MON',
 'recurring_payment_amount' => 10,
 'status' => 'ENABLED',
 'label' => 'Recurring entry - 1340137652',
 'recurring_payments_remaining' => NULL,
 'start_date' => '2012-07-19',
 'recurring_schedule_description' => 'Every week on Monday',
 'next_recurring_payment_date' => '2018-06-25',
 'error' => false,
 'error_code' => 0,
 'error_msg' => NULL,
 'error_message' => NULL,
));

Example response for modifying the value of a recurring payment
array (
 'recurring_id' => 1,
 'token_id' => '000000000010',
 'recurring_schedule' => 'WEEKLY_MON',
 'recurring_payment_amount' => 10,
 'status' => 'ENABLED',
 'label' => 'Recurring entry - 1340137652',
 'recurring_payments_remaining' => NULL,
 'start_date' => '2012-07-19',
 'recurring_schedule_description' => 'Every week on Monday',
 'next_recurring_payment_date' => '2018-06-25',
 'error' => false,
 'error_code' => 0,
 'error_msg' => NULL,
 'error_message' => NULL,
)

86

Example post for disabling the schedule of an existing recurring payment
$sl->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'action' => 'EDIT',
 'recurring_id' => '000000000001',
 'status' => 'DISABLED',
));

Example response for disabling the schedule of an existing recurring payment
array (
 'recurring_id' => 1,
 'token_id' => '000000000010',
 'recurring_schedule' => 'WEEKLY_MON',
 'recurring_payment_amount' => 10,
 'status' => 'DISABLED',
 'label' => 'Recurring entry - 1340137652',
 'recurring_payments_remaining' => NULL,
 'start_date' => '2018-07-19',
 'recurring_schedule_description' => 'Every week on Monday',
 'next_recurring_payment_date' => '2018-06-25',
 'error' => false,
 'error_code' => 0,
 'error_msg' => NULL,
 'error_message' => NULL,
)
 	

87

RSAPI
Example request
$rs->setParams(array (
 'account_id' => '000000000001',
 'api_accesskey' => 'abcdef123456',
 'transaction_date' => '2018-06-20',
 'tender_type' => 'CARD',
));

Example response
"transaction_id","account_id","authorization_date","tender_type","transaction_type","keyed","swiped"
,"transaction_amount","name","card_brand","last4","card_expiration","description","user_data","auth
orization_msg","authorization_code","avs_response","cvv2_response","ip_address","cashier","street_a
ddress1","city","state","zip","country","phone","email","group","refund_id","custom_id","action_date",
"noc_data"
"000000000050","000000000001","2018-06-20
17:29:13","CARD","SALE","1","0","29.50","","VISA","1111","0315","","","APPROVED","092113","","N",""
,"QSAPI 3.8","","","","","","","","","","","",""
"000000000044","000000000001","2018-06-20
16:14:04","CARD","","1","0","12.50","","VISA","1111","0315","","","FORCE","123456","","","","QSAPI
3.8","","","","","","","","","","","",""
"000000000043","000000000001","2018-06-20 15:42:37","CARD","CREDIT","1","0","-
100.00","","VISA","1111","0315","","","CREDIT","","","","","QSAPI 3.8","","","","","","","","","","","",""
"000000000042","000000000001","2018-06-20 15:39:26","CARD","REFUNDED
SALE","1","0","25.00","John Smith","VISA","1111","0315","Test transaction","","VOID","","","","","QSAPI
3.8","123 Main St","Anytown","NY","10101","","212-555-1212","","","000000000041","","",""
"000000000041","000000000001","2018-06-20 15:38:26","CARD","REFUND","1","0","-25.00","John
Smith","VISA","1111","0315","Test transaction","","VOID","099373","U","","","QSAPI 3.8","123 Main
St","Anytown","NY","10101","","212-555-1212","","","000000000042","","",""
"000000000040","000000000001","2018-06-20 15:35:13","CARD","SALE","1","0","18.00","John
Smith","VISA","1111","0315","Test transaction","","APPROVED","099182","U","","","QSAPI 3.8","123
Main St","Anytown","NY","10101","","212-555-1212","","","","","",""
"000000000039","000000000001","2018-06-20
15:33:50","CARD","AUTHORIZATION","1","0","176.58","","VISA","1111","0315","","","APPROVED","099
105","","N","","QSAPI 3.8","","","","","","","","","","","",""
"000000000027","000000000001","2018-06-20 11:09:54","CARD","SALE","1","0","176.58","John
Smith","VISA","1111","0315","Test transaction","","APPROVED","090047","U","N","","QSAPI 3.8","123
Main St","Anytown","NY","10101","","212-555-1212","","","","","",""

88

JSON formatted example response
To receive the report in JSON simply add “response_format = JSON” to your request parameters. The
output will look similar to this:

{
 "api": "RSAPI",
 "version": "3.8",
 "count": 1,
 "transactions": [
 {
 "transaction_id": "000000924339",
 "account_id": "000000000001",
 "authorization_date": "2018-07-30 10:38:12",
 "tender_type": "CARD",
 "transaction_type": "SALE",
 "keyed": "1",
 "swiped": "0",
 "entry_mode": "keyed",
 "transaction_amount": "176.58",
 "name": "John Smith",
 "card_brand": "VISA",
 "last4": "1111",
 "card_expiration": "0315",
 "description": "'Test transaction'",
 "user_data": "",
 "authorization_msg": "APPROVED",
 "authorization_code": "097468",
 "avs_response": "A",
 "cvv2_response": "N",
 "ip_address": "",
 "cashier": "QSAPI 3.8",
 "street_address1": "'123 Main St'",
 "city": "Anytown",
 "state": "NY",
 "zip": "10101",
 "country": "",
 "phone": "212-555-1212",
 "email": "",
 "group": "",
 "refund_id": "",
 "custom_id": "",
 "action_date": "",
 "noc_data": "",
 "recurring_id": 0
 }
]
}

89

XML formatted example response
To receive the report in XML simply add “response_format = XML” to your request parameters. The
output will look similar to this:

<transaction>
 <transaction_id>000000924339</transaction_id>
 <account_id>000000000001</account_id>
 <authorization_date>2018-07-30 10:38:12</authorization_date>
 <tender_type>CARD</tender_type>
 <transaction_type>SALE</transaction_type>
 <keyed>1</keyed>
 <swiped>0</swiped>
 <entry_mode>keyed</entry_mode>
 <transaction_amount>176.58</transaction_amount>
 <name>John Smith</name>
 <card_brand>VISA</card_brand>
 <last4>1111</last4>
 <card_expiration>0315</card_expiration>
 <description>'Test transaction'</description>
 <user_data/>
 <authorization_msg>APPROVED</authorization_msg>
 <authorization_code>097468</authorization_code>
 <avs_response>A</avs_response>
 <cvv2_response>N</cvv2_response>
 <ip_address/>
 <cashier>QSAPI 3.8</cashier>
 <street_address1>'123 Main St'</street_address1>
 <city>Anytown</city>
 <state>NY</state>
 <zip>10101</zip>
 <country/>
 <phone>212-555-1212</phone>
 <email/>
 <group/>
 <refund_id/>
 <custom_id/>
 <action_date/>
 <noc_data/>
 <recurring_id>0</recurring_id>
</transaction>

90

Appendix:	Transaction	Responses	and	Messages	
The following information is for use by Bluefin merchants as well as programmers to help understand
transaction related terms you may find within the Bluefin gateway and processing tunnels.

The list is comprised of three sections: Transaction Origins, Transaction Authorization Response Codes,
and Transaction Status Codes, all listed in detail below. While we try to keep this information up to date
and accurate, some information may change from time to time and may not be immediately updated
here. If you receive an error response and are unclear of the error response, or believe them to be in
error, contact Bluefin support at support@bluefin.com

Transaction Origins:

Error Code Description
AUTO-REFUND System initiated refund
V-TERM Virtual Terminal, Manual action by a logged in user
N2.SIGNUP Hosted payment form, membership signup (Interactive Mode 2.2)
N2.PURCHASE Hosted payment form, one time purchase (Interactive Mode 2.2)
ND2.TRANS Direct Mode v2.1 (signup or one time purchase)
ND3.TRANS Direct Mode v3.1 (one time purchase)
ND3.SIGNUP Direct Mode v3.1 (membership signup transaction)
RAD.TEST System Generated Test (Only on test/demo accounts)
BA.TRANS Batch Upload Transactions
RETRY Rare, manual internal retry
RECURRING A re-bill initiated by Bluefin automatically

Transaction Authorization Response Codes:

Authorization Response Codes:
Error Code Description
DECLINED This is the most common, generic decline message. It is an actual

decline from the issuing bank and details are not provided.

AVS/CVV2 Authorization Responses:
Error Code Description
BAD ADDRESS The AVS response received was not in the list of acceptable AVS codes.

The transaction has been aborted.
CVV2 MISMATCH The CVV2/CID response received was not in the list of acceptable CVV2

codes. The transaction has been aborted.

 	

91

FraudFirewall Authorization Responses:
When FraudFirewall is enabled, transactions that fail a FraudFirewall checkpoint will be rejected prior to
an attempt to authorize the transaction.

Error Code Description
A/DECLINED The transaction exceeded the traffic limits.
B/DECLINED The transaction contains information found in the blacklist or high-risk

country list.
C/DECLINED The country of origin found in the high risk country list.
E/DECLINED The email address in the transaction is not valid.
I/DECLINED The country of origin did not match the country specified by card

holder (IP, Card, Address)
J/DECLINED The transaction contains profane or otherwise suspicious information.

This check is disabled in the virtual terminal.
L/DECLINED The transaction failed to pass US Location Verification.
R/DECLINED The transaction contained a high-risk country or came from an

anonymous domain.

Traffic Limit Authorization Responses:
Transactions that exceed a traffic limit set by FraudFirewall settings or your preset quotas will be
rejected prior to an attempt to authorize the transaction.

Error Code Description
A/QUOTA EXCEEDED The transaction exceeded the maximum dollar volume limit per card.
C/QUOTA EXCEEDED The transaction exceeded the maximum number of credits/refunds

allowed within a time period (contact Bluefin Customer Service).
M/QUOTA EXCEEDED The transaction exceeded the maximum per transaction amount limit.
R/QUOTA EXCEEDED The transaction exceeded the maximum dollar volume of

credits/refunds allowed within a time period (contact Bluefin
Customer Service).

S/QUOTA EXCEEDED The transaction exceeded the maximum number of sales allowed
within a time period (contact Bluefin Customer Service).

Bank Authorization Responses:
Some banks may return authorization responses which do not clearly state the nature of the response.
Below are the obvious, and not so obvious, responses we have on file:

Error Code Description
ACCT FROZEN Account frozen, cannot transfer funds
APPROVED Transaction authorized
CALL 01 Refer to issuer
CALL 02 Refer to issuer, special condition
NO REPLY 28 File is temporarily unavailable
NO REPLY 91 Issuer switch is unavailable
HOLD-CALL 04 Pick up card
HOLD-CALL 07 Pick up card, special condition

92

HOLD-CALL 41 Pick up card, lost
HOLD-CALL 43 Pick up card, stolen
ACCT LENGTH ERR EA Verification error
ALREADY REVERSED 79 Already reversed at switch
AMOUNT ERROR 13 Invalid Amount
CANT VERIFY PIN 83 Cannot verify PIN
CANT VERIFY PIN 86 Cannot verify PIN
CARD NO. ERROR 14 Invalid card number
CASHBACK NOT APP 82 Cashback limit exceeded
CASHBACK NOT AVL N3 Cashback service not available
CHECK DIGIT ERR EB Verification error
CID FORMAT ERROR EC Verification error
CVV2 MISMATCH N7 CVV2 data does not match
DATE ERROR 80 Invalid Date
DECLINE 02 Force Transaction with Voice Authorization
DECLINE 05 Do not honor
DECLINE 51 Insufficient funds
DECLINE N4 Exceeds issuer withdrawal limit
DECLINE 61 Exceeds withdrawal limit
DECLINE 62 Invalid service code, restricted
DECLINE 65 Activity limit exceeded
DECLINE 93 Violation, cannot complete
DECLINE AVS 06 Denied for AVS
ENCRYPTION ERROR 81 Cryptographic error
ERROR CODE 98 Unknown Error
EXPIRED CARD 54 Expired card
FAILURE CV Card Type Verification Error (Card Type not accepted)
Failure HV Configuration error when your account was created
GENERAL ERROR 98 Potentially NULL value passed, experienced when CVV2 left blank
INV MERCH NUM 19 Invalid Merchant ID
Invalid Account Number Invalid account number length or format
INVALID BANK ACT Invalid bank account
INVALID ROUTING 92 Destination not found
INVALID TRANS 12 Invalid transaction (may be invalid account #)
NO ACCOUNT 78 No account
No Acct/Cannot Locate No account exists
NO ACTION TAKEN 21 Unable to back out transaction
NO ACTION TAKEN 76 Unable to locate, no match
NO ACTION TAKEN 77 Inconsistent data, reversal or repeat
NO CHECK ACCOUNT 52 No checking account
NO CREDIT ACCT 39 No credit account

93

NO SAVE ACCOUNT 53 No savings account
NO SUCH ISSUER 15 No such issuer
OFFLINE RETURN Refund of check or credit transaction
PIN EXCEEDED 75 PIN tries exceeded
RE ENTER 19 Re-enter transaction
SEC VIOLATION 63 Security violation
SERV NOT ALLOWED 57 Transaction not permitted - card
SERV NOT ALLOWED 58 Transaction not permitted - term
SYSTEM ERROR 96 System malfunction
TERM ID ERROR 03 Invalid Merchant ID
WRONG PIN 55 Incorrect PIN
XXXXXXXXXXXXXXXX XX Undefined response

94

Transaction Status Codes:
Error Code Description
ACH.CB/ISSUED Check chargeback has been issued
ACH/FAILED Check did not pass fraud scrubbings or was invalid and not submitted

to banking network.
ACH/RETURN Check returned after being submitted to banking network
ACH/ISSUED Check issued but not yet submitted to banking network, can be

cancelled
ACH/PENDING Check issued, submitted to banking network, and awaiting approval
ACH/OK Check issued, submitted to banking network, approved and funds

transferred
ACH/REFUNDED Check transaction has been refunded, refund transaction is separate
AUTH/FAILED Auth only attempt declined
AUTH/OK Auth only attempt approved
CREDIT/OPEN Credit to card which was not originally charged, not yet settled, can

NOT be voided
CREDIT/OK Credit to card which was not originally charged, settled, funds

transferred
REFUND/FAILED Refund declined, may have invalid information
REFUND/OK Refund approved, funds transferred
REFUND/OPEN Refund [Credit Card] issued, not yet settled, can NOT be voided
REFUND/ISSUED Refund [Check] issued, not yet submitted to banking network
REFUND/PENDING Refund [Check] issued, submitted to banking network, and awaiting

approval
S/REFUNDED Credit Card transaction has been refunded; this is the original sale, not

the actual refund transaction
SALE/FAILED Sale declined
SALE/NOP Status set manually for problematic transaction (extremely rare)
SALE/ERROR Status set manually for problematic transaction (extremely rare)
SALE/OK Sale approved, settled, and funds transferred
SALE/OPEN Sale approved, not yet settled, can be voided
SALE/CB Previously approved transaction that has been charged back by the

customer and imported into our system. Previously transaction would
have been a SALE/OK but now has changed status.

95

EMV	Data	Overview	
Request
The Point Of Sale (POS) device posts to QSAPI the following data:

Variable Name Max Type Req'd Description
account_id 12 Numeric Yes The Payconex account identification number that

you are issued after your account has been setup.
api_accesskey 32 Alphanumeric Yes The secret key that you will be provided when

your Payconex account is set up and when you
have requested access to QSAPI.

timestamp 19 YYYY-MM-DD
HH:MM:SS

No If used, MUST be included in a hash for
authenticated transactions.
See "Appendix: Using HASH for Authenticated
Transactions"

tender_type n/a Enumerated Yes The payment tender type that you are
submitting. The following enumerated values are
allowed:
CARD: credit, debit, and check cards
EBT: Electronic Benefits Transfer (Elavon only)
DEBIT: PIN Debit card only
(Elavon/Omaha/North)

transaction_type n/a Enumerated Yes The type of transaction you are requesting, with
these enumerated values allowed:
SALE: authorizes the funds on the card and flags
the transaction to be captured for settlement at
the next settlement time.
REFUND: refunds a previous sale. If the
transaction has not yet been settled, then this
results in a void. Otherwise, for Cards only, it
results in a credit back on the card. ACH
transactions can't be refunded once they are
submitted for settlement (NOTE: For actual
transaction settlement times, contact Bluefin
support). You can specify an amount less than
the original sale amount. Requires token_id.
BALANCE: request account balance on a
EBT/Debit card (Elavon only).

transaction_amount 9 Numeric with
decimal

Yes This is the dollar (or other currency) amount of
the transaction. Only numbers and a single
decimal are allowed. Commas are not allowed.
The maximum amount is 999999.99. That is 1
cent less than 1 million. This is because the
decimal is counted in the max size. Values with
no decimal and no cents are allowed. Values with
only a single number after the decimal are
allowed and will be assumed to have a trailing 0.

transaction_description 65K Character No A description of the payment. This is an open
field. If emails are sent to the customer or
merchant, this will show in the “Description:”
field. You may use this to send any information

96

that you wish. It can store up to 65,000
characters.

card_tracks ? Character Yes/No The characters from the full, un-modified
payload. Must be well formed XML string, see
“EMV Tag Info” section below (request column)

pin ? Alphanumeric No The encrypted PIN Block portion for PIN debit or
PIN EBT transactions. It must be obtained from a
PCI PTS/PED Certified device that is injected by
Bluefin’s Encryption Service Organization or Key
Injection Facility (KIF). This PIN Block may never
be stored for any reason.

ksn ? Alphanumeric No The Key Sequence Number (DUKPT) portion for
PIN debit, PIN EBT, or EMV transactions. It must
be obtained from a PCI PTS/PED Certified device
that is injected by Bluefin’s Encryption Service
Organization or Key Injection Facility (KIF). The
KSN may never be stored for any reason.

ebt_type n/a Enumerated Yes/No For EBT (Electronic Benefits Transfer), the type
can be as follows:
FOOD: this is for a food sale
CASH: this is for a cash sale
Required if tender_type=EBT

customer_data 65K Character No Any customer data relevant to the transaciton
(for semi-integrated only)

cashier * 100 Alphanumeric No The cashier that created the original transaction.
token_id 12 Numeric No 12 digit transaction_id of a previous transaction,

when doing a refund. Please see the SLAPI
documentation for more information.

Response
The response will be the same as a QSAPI response (see above section on QSAPI Response) with a few
differences.

EMV transaction response additionally includes processor’ EMV related data (emv_tags). This data is to
communicate to the card’s chip for update.
emv – contains an XML string of chip related processor response – see “EMV Tag Info” section below
(request column, ones marked with an ‘X’)
Note: AppVer parameter of Dvc tag will indicate the following methods:
AppVer=”1.0” (Swipe)
AppVer=”2.0” (Contactless)
AppVer=”2.1” (EMV and Contactless)

Example Request (Credit Card, EMV Contact)
card_tracks=’ <PAX Ver="2.0"><Dvc App="Bluefin" AppVer="2.1" DvcType="S500"
DvcSN="65000111" Entry="EMV"></Dvc><ICC _9f26="000000002000" _9f27="80"
_9f37="549F8B9C" _9f36="0001" _95="0480000000" _9c="00" _82="5D80"

97

_9f33="E0F8C8" _9f34="5E0300" _9a="160519" _5f2a="840" _9f02="000000002000"
_9f03="000000000000" _9f35="22" _5f34="00" _5f24="161130"
_9f10="06020103A00000" _9f1a="840"></ICC><Card CEncode="0"
ETrk1="670219E5024E11D06EF137DC8F35C89FFAD0FBCC82BE30A29FE152B9F5183A49AF8A5B
DF048757C32147F771F099410BDC66035DC7CC0DD3C2E73EFE4CFE6D90"
ETrk2="90A52091B09589BE7195CF3787E51DCB1314C7B11BC99028BE4905149DC674F295C687
F7D06A3D93" CDataKSN="62994912410000800051" CHolder="FDCS/TEST CHECK CARD"
EFormat="0"></Card><Addr></Addr><Tran TranType="CREDIT"></Tran></PAX>’

Example Response (EMV related data)
...
emv_tags=<icc _9f36="000B" _5f34="01" EMV_Key_Date="06152016" />
...

EMV Tag Info:
A list of EMV tags with requirements, lengths and sample data to allow one to build or understand the
EMV payloads. Also note if the tag value is included in the response.

TagID Req'd Length Type Sample Value Notes Request Response

9F26 Yes 16 Hex B3CD6686EFC20095

Value returned by the
chip (ICC) in response
to a “Generate AC”
command.

X

9F27 2 Hex 80 The Cryptogram
Information Data X

9F37 Yes 8 Hex E180229B

Value is used to
provide variability and
uniqueness to the
generation of a
cryptogram.

X

9F36 4 Hex 000B
The Application
Transaction Counter
(ATC)

X X

95 Yes 10 Hex 8000008000
Status of the different
functions as seen
from the terminal.

X

9C 2 Numeric 00

Type of financial
transaction,
represented by the
first two digits of ot
the ISO 8583

X

82 4 Hex 1C00

Application
interchange profile --
capabilities of the
card to support
specific function
within the app.

X

98

9F33 Yes 6 Hex E0B8C8

Value that indicates
the card data input,
CVM, and security
capabilities of the
terminal.

X

9F34 Yes 6 Hex 410302

Results of the last
Card Verification
Method (CVM)
performed.

X

9A 6 Numeric 100812

Local date that the
transaction was
authorized
(YYMMDD).

X

5F2A 3 Numeric 124

Currency code of the
transaction according
to the ISO 4217
standard.

X

9F02 12 Numeric 000000001000

Authorized amount of
the transaction
(excluding
adjustments).

X

9F03 12 Numeric 000000000000

Value is used to
indicate a secondary
“Cashback” amount
associated with the
transaction.

X

9F35 Yes 2 Numeric 22 Terminal Type X

5F34 2 Numeric 01
The Application PAN
Sequence Number
(CSN)

X X

5F24 Yes 6 Numeric 151231
The Application
Expiration Date
(YYMMDD)

X

9F10 64 Hex 06010A03A48800 The Issuer Application
Data X

9F1A 3 Numeric 840 The Terminal Country
Code X

8A 2 Alpha The Authorization
Response Code X

9F6E 8 Hex Form Factor Indicator X

9F7C 64 Hex The Customer
Exclusive Data X

9F6E 64 Hex Third Party Data X

84 32 Hex
Dedicated File Name
(Application
Identifier)

X

99

71 256 Hex

The Card Issuer Script
Command to be
submitted to the Chip
card

 X

72 256 Hex

The Card Issuer Script
Command to be
submitted to the Chip
card

 X

91 32 Hex The Issuer
Authentication Data X

 8 Numeric 03092016
The date of the last
Host EMV Key Update
in MMDDYYYY format

 X

100

Key exchange request
When the POS (Point Of Sale) gets the EMV_Key_Date field back from Elavon in a response message, the
POS needs to compare that date to the date the POS has stored. If the host date is newer, the POS needs
to send to Bluefin an “EMV Key Exchange Request”.

In order to do this, the POS posts to QSAPI the following:

Variable Name Max Type Req'd Description
account_id 12 Numeric Yes The Payconex account identification number that you

are issued after your account has been setup.
api_accesskey 32 Alphanumeric Yes The secret key that you will be provided when your

Payconex account is set up and when you have
requested access to QSAPI.

transaction_type n/a Enumerated Yes The type of transaction you are requesting, with
enumerated value of:
KEYEXCHANGE

custom_id Yes The value returned in the last response for the
"record_number" attribute.
For very 1st Key Exchange Request this value should be
0.

Key Exchange Response
Key exchange response includes
transaction_timestamp
error
error_code
error_message
emv_tags
Note: emv_tags value is XML string formatted as follow:

<icc attributes />
See section below entitled “Key Exchange Attributes” for more detail on returned attributes.

Example Request
account_id=180000000045&api_accesskey=5f6964d6babeb1d927470931dc68d83c
&transaction_type=KEYEXCHANGE&custom_id=0

Example Response
transaction_timestamp=2016-07-18+12%3A15%3A01
&error=0&error_code=0&error_message=&emv_tags= <icc record_number="1"
additional_key_available="1" data_type="01" rid="A000000003" pki="94" hash_id="01"
digital_signature_id="01"
public_key="ACD2B12302EE644F3F835ABD1FC7A6F62CCE48FFEC622AA8EF062BEF6FB8BA8BC68BBF6A
B5870EED579BC3973E121303D34841A796D6DCBC41DBF9E52C4609795C0CCF7EE86FA1D5CB041071E
D2C51D2202F63F1156C58A92D38BC60BDF424E1776E2BC9648078A03B36FB554375FC53D57C73F5160
EA59F3AFC5398EC7B67758D65C9BFF7828B6B82D4BE124A416AB7301914311EA462C19F771F31B3B57
336000DFF732D3B83DE07052D730354D297BEC72871DCCF0E193F171ABA27EE464C6A97690943D59B

101

DABB2A27EB71CEEBDAFA1176046478FD62FEC452D5CA393296530AA3F41927ADFE434A2DF2AE3054F
8840657A26E0FC617" exponent="03" check_sum="C4A3C43CCF87327D136B804160E47D43B60E6E0F"
ca_public_key_length="F8" ca_public_key_exp_date="221231" emv_key_date="06152016"/>

Key Exchange Attributes
A list of the Key Exchange Attributes that can be returned in a response as follows:

AttributeID Req'd Length Type Sample
Value

Notes

Record_Number Optional 4 Numeric 0 Next Request Record
Number.

Additional_Key_Available Yes 1 Numeric 1 0 = No more keys to
download; 1 = there are
more keys available for
download.

Data_Type 2 Numeric 01 Type of EMV key. 01 = CA
Public Key

RID Yes 10 Alpha A000000003 Registered Application
Provider Identifier.

PKI Yes 2 Hex 94 CA Public Key Index
Hash_ID 2 Alpha 01 Hash Algorythm Identifier

(01 = default).
Digital_Signature_ID 2 Alpha 01 Digital Signature Algorytm

Identifier (01 = default)
Public_Key Yes 496 Hex ACD2B12302… Value of the Public Key
Exponent Yes 6 Alpha 03 Public Key Exponent Value
Check_Sum Yes 40 Hex C4A3C43CCF… CA Public Key Check Sum
CA_Public_Key_Length Yes 2 Hex F8 Length of the Public Key in

hex
CA_Public_Key_Exp_Date Yes 6 Numeric 221231 CA Public Key Expiration

Date in YYMMDD format
EMV_Key_Date 8 Numeric 06152016 The date of the last Host

EMV Key Update in
MMDDYYYY format

